首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions between cationic and aromatic side chains of amino acid residues, the so-called cation-pi interaction, are thought to contribute to the overall stability of the folded structure of peptides and proteins. The transferred NOE NMR structure of the G(t)alpha(340-350) peptide bound to photoactivated rhodopsin (R*) geometrically suggests a cation-pi interaction stabilizing the structure between the epsilon-amine of Lys341 and the aromatic ring of the C-terminal residue, Phe350. This interaction has been explored by varying substituents on the phenyl ring to alter the electron density of the aromatic ring of Phe350 and observing the impact on binding of the peptide to R*. The results suggest that while a cation-pi interaction geometrically exists in the G(t)alpha(340-350) peptide when bound to R*, its energetic contribution to the stability of the receptor-bound structure is relatively insignificant, as it was not observed experimentally. The presence of an adjacent and competing salt-bridge interaction between the epsilon-amine of Lys341 and the C-terminal carboxylate of Phe350 effectively shields the charge of the ammonium group. Experimental data supporting a significant cation-pi interaction can be regained through a series of Phe350 analogues where the C-terminal carboxyl has been converted to the neutral carboxamide, thus eliminating the shielding salt-bridge. TrNOE NMR experiments confirmed the existence of the cation-pi interaction in the carboxamide analogues. Various literature estimates of the strength of cation-pi interactions, including some that estimate strengths in excess of salt-bridges, are compromised by omission of the relevant anion in the calculations.  相似文献   

2.
The interaction of the lipophilic cyclophane 1 with several acetylcholine (ACh) and tetramethylammonium (TMA) salts has been investigated in deuteriochloroform to ascertain the influence of the counterion on the cation-pi interaction. Reliable association constants have been measured for 17 salts of commonly used anions; corresponding binding free energies -DeltaG degrees ranged from over 8 kJ mol(-1) down to the limit of detection. The dramatic dependence of the binding energy on the anion showed that the latter takes part in the process with a passive and adverse contribution, which inhibits cation binding even to complete suppression in unfavorable cases. Thermodynamic parameters for the association of 1 with TMA picrate demonstrate that binding is enthalpic in origin, showing a substantial enthalpy gain (DeltaH degrees = -16.7 kJ mol(-1)) and an adverse entropic contribution (DeltaS degrees = -27.9 J mol(-1) K(-1)). A correlation has been found between the "goodness" of anions as binding partners and the solubility of their salts. Conversion of the anion into a more charge-dispersed species, for example, conversion of chloride into dialkyltrichlorostannate, improves cation binding substantially, indicating that charge dispersion is a main factor determining the influence of the anion on the cation-pi interaction. DFT computational studies show that the variation of the binding free energy of TMA with the counterion is closely accounted for by the electrostatic potential (EP) of the ion pair: guest binding appears to respond to the cation's charge density exposed to the receptor, which is determined by the anion's charge density through a polarization mechanism. A value of -DeltaG degrees = 38.6 kJ mol(-1) has been extrapolated for the free energy of binding of TMA to 1 in chloroform but in the absence of a counterion. The transmission of electrostatic effects from the ion pair to the cation-pi interaction demonstrates that host-guest association is governed by Coulombic attraction, as long as factors (steric, entropic, solvation, etc.) other than pure electrostatics are not prevalent.  相似文献   

3.
Cation-pi and the corresponding anion-pi interactions have in general been investigated as binary complexes despite their association with counterions. However, a recent study of the ammonia channel highlights the important but overlooked role of anions in cation-pi interactions. In an effort to examine the structural and energetic consequences of the presence of counterions, we have carried out detailed ab initio calculations on some model cation-pi-anion ternary complexes and evaluated the nonpair potential terms, three-body contributions, and attractive and repulsive energy components of the interaction energy. The presence of the anion in the vicinity of the pi system leads to a large redistribution of electron density and hence leads to an inductive stabilization. The resulting electronic and geometrical changes have important consequences in both chemical and biological systems. Compared to cation-pi-anion ternary complexes, the magnitude of the cation-pi interaction in pi-cation-anion ternary complexes is markedly lower because of charge transfer from the anion to the cation.  相似文献   

4.
The solution binding properties of calix[4]pyrroles with anion (added as tetraalkylammonium salts) were investigated using UV-vis spectroscopic techniques. The obvious red-shift of absorption maximum band of calix[4]pyrrole in EtOH in the presence of the tetramethylammonium (TMA(+)) or tetraethylammonium (TEA(+)) salts were observed. These results displayed in electronic absorption spectra indicated calix[4]pyrrole receptors linking anionic species through multiple hydrogen bonding interactions are capable of using the periphery electron-rich "walls" for selectively binding electron-deficient tetraalkylammonium cation subunits by cation-pi charge-transfer interaction. It was seen that the stability of the calix[4]pyrrole-anion complex depends strongly on the cation. The meso-alkyl groups of the calix[4]pyrrole, the affinity for the anion subunits and the structure of tetraalkylammonium cations have considerable effects on the formation of cation-pi charge-transfer interaction.  相似文献   

5.
The influence of introducing water molecules into a cation-pi complex on the interaction between the cation and the pi system was investigated using the MP2/6-311++G method to explore how a cation-pi complex changes in terms of both its geometry and its binding strength during the hydration. The calculation on the methylammonium-benzene complex showed that the cation-pi interaction is weakened by introducing H(2)O molecules into the system. For example, the optimized interaction distance between the cation and the benzene becomes longer and longer, the transferred charge between them becomes less and less, and the cation-pi binding strength becomes weaker and weaker as the water molecule is introduced one by one. Furthermore, the introduction of the third water molecule leads to a dramatic change in both the complex geometry and the binding energy, resulting in the destruction of the cation-pi interaction. The decomposition on the binding energy shows that the influence is mostly brought out through the electrostatic and induction interactions. This study also demonstrated that the basis set superposition error, thermal energy, and zero-point vibrational energy are significant and needed to be corrected for accurately predicting the binding strength in a hydrated cation-pi complex at the MP2/6-311++G level. Therefore, the results are helpful to better understand the role of water molecules in some biological processes involving cation-pi interactions.  相似文献   

6.
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies of a wide variety of copper cation-pi complexes, Cu(+)(pi-ligand), where pi-ligand = benzene, flurobenzene, chlorobenzene, bromobenzene, iodobenzene, phenol, toluene, anisole, pyrrole, N-methylpyrrole, indole, naphthalene, aniline, N-methylaniline, and N,N-dimethylaniline. The primary and lowest energy dissociation pathway corresponds to the endothermic loss of the intact neutral pi-ligand for all complexes except those to N-methylpyrrole, indole, aniline, N-methylaniline, and N,N-dimethylaniline. In the latter complexes, the primary dissociation pathway corresponds to loss of the intact ligand accompanied by charge transfer, thereby producing a neutral copper atom and ionized pi-ligand. Fragmentation of the pi-ligands is also observed at elevated energies in several cases. Theoretical calculations at the B3LYP/6-311G(d,p) level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Multiple low-energy conformers are found for all of the copper cation-pi complexes. Theoretical bond dissociation energies are determined from single point energy calculations at the B3LYP/6-311+G(3df,2p) level of theory using the B3LYP/6-311G(d,p) optimized geometries. The agreement between theory and experiment is very good for most complexes. The nature and strength of the binding in these copper cation-pi complexes are studied and compared with the corresponding cation-pi complexes to Na(+). Natural bond orbital analyses are carried out to examine the influence of the d orbital occupation on copper cation-pi interactions.  相似文献   

7.
The complex of Na(+) with phenylalanine (Phe) is a prototype for the participation of cation-pi interactions in metal-ion binding to biological molecules. A recent comparison of this complex with the Na(+)/alanine (Na(+)/Ala) counterpart suggested only a small contribution of the phenyl ring interaction to binding, casting doubt on the extent of the cation-pi effect. The present work reexamines this thermochemistry using ligand-exchange equilibrium measurements in the Fourier transform ion cyclotron resonance (FT-ICR) ion trapping mass spectrometer. An increment of 7 +/- 2 kcal mol(-1) was found in the Ala/Phe comparison of binding enthalpies, confirming the importance of cation-pi binding enhancement in the Phe case. Absolute Na(+) binding enthalpies of 38 +/- 2 and 45 +/- 2 kcal mol(-1) were assigned for Ala and Phe, respectively, using pyridine as the thermochemical reference ligand. All of these results were supported by quantum calculations using both density functional and Hartree-Fock/MP2 methods, improved in several respects over previous calculations. Alanine methyl ester (AlaMe) was also observed, and found to have an Na(+) ion affinity larger by 2.3 kcal mol(-1) than Ala. New, lower energy conformations of neutral Phe were discovered in the computations.  相似文献   

8.
The nature and strength of the cation-pi interaction in protein-ligand binding are modeled by considering a series of nonbonded complexes involving N-substituted piperidines and substituted monocylic aromatics that mimic the delta-opioid receptor-ligand binding. High-level ab initio quantum mechanical calculations confirm the importance of such cation-pi interactions, whose intermolecular interaction energy ranges from -6 to -12 kcal/mol. A better understanding of the electrostatics, polarization, and other intermolecular interactions is obtained by appropriately decomposing the total interaction energy into their individual components. The energy decomposition analysis is also useful for parametrizing existing molecular mechanics force fields that could then account for energetic contributions arising out of cation-pi interactions in biomolecules. The present results further provide a framework for interpreting experimental results from point mutation reported for the delta-opioid receptor.  相似文献   

9.
GABA(C) (rho) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which includes nicotinic acetylcholine (nACh), 5-HT(3), and glycine receptors. As in other members of this family, the agonist binding site of GABA(C) receptors is rich in aromatic amino acids, but while other receptors bind agonist through a cation-pi interaction to a tryptophan, the GABA(C) binding site has tyrosine at the aligning positions. Incorporating a series of tyrosine derivatives at position 198 using unnatural amino acid mutagenesis reveals a clear correlation between the cation-pi binding ability of the side chain and EC(50) for receptor activation, thus demonstrating a cation-pi interaction between a tyrosine side chain and a neurotransmitter. Comparisons among four homologous receptors show variations in cation-pi binding energies that reflect the nature of the cationic center of the agonist.  相似文献   

10.
Cation-pi interactions between amino acid side chains are increasingly being recognized as important structural and functional features of proteins and other biomolecules. Although these interactions have been found in static protein structures, they have not yet been detected in dynamic biomolecular systems. We determined, by (1)H NMR spectroscopic titrations, the energies of cation-pi interactions of the amino acid derivative AcLysOMe (1) with AcPheOEt (2) and with AcTyrOEt (3) in aqueous and three organic solvents. The interaction energy is substantial; it ranges from -2.1 to -3.4 kcal/mol and depends only slightly on the dielectric constant of the solvent. To assess the effects of auxiliary interactions and structural preorganization on formation of cation-pi interactions, we studied these interactions in the association of pentapeptides. Upon binding of the positively-charged peptide AcLysLysLysLysLysNH(2) (5) to the negatively-charged partner AcAspAspXAspAspNH(2) (6), in which X is Leu (6a), Tyr (6b), and Phe (6c), multiple interactions occur. Association of the two pentapeptides is dynamic. Free peptides and their complex are in fast exchange on the NMR time-scale, and 2D (1)H ROESY spectra of the complex of the two pentapeptides do not show intermolecular ROESY peaks. Perturbations of the chemical shifts indicated that the aromatic groups in peptides 6b and 6c were affected by the association with 5. The association constants K(A) for 5 with 6a and with 6b are nearly equal, (4.0 +/- 0.7) x 10(3) and (5.0 +/- 1.0) x 10(3) M(-)(1), respectively, while K(A) for 5 with 6c is larger, (8.3 +/- 1.3) x 10(3) M(-)(1). Molecular-dynamics (MD) simulations of the pentapeptide pairs confirmed that their association is dynamic and showed that cation-pi contacts between the two peptides are stereochemically possible. A transient complex between 5 and 6 with a prominent cation-pi interaction, obtained from MD simulations, was used as a template to design cyclic peptides C(X) featuring persistent cation-pi interactions. The cyclic peptide C(X) had a sequence in which X is Tyr, Phe, and Leu. The first two peptides do, but the third does not, contain the aromatic residue capable of interacting with a cationic Lys residue. This covalent construct offered conformational stability over the noncovalent complexes and allowed thorough studies by 2D NMR spectroscopy. Multiple conformations of the cyclic peptides C(Tyr) and C(Phe) are in slow exchange on the NMR time-scale. In one of these conformations, cation-pi interaction between Lys3 and Tyr9/Phe9 is clearly evident. Multiple NOEs between the side chains of residues 3 and 9 are observed; chemical-shift changes are consistent with the placement of the side chain of Lys3 over the aromatic ring. In contrast, the cyclic peptide C(Leu) showed no evidence for close approach of the side chains of Lys3 and Leu9. The cation-pi interaction persists in both DMSO and aqueous solvents. When the disulfide bond in the cyclic peptide C(Phe) was removed, the cation-pi interaction in the acyclic peptide AC(Phe) remained. To test the reliability of the pK(a) criterion for the existence of cation-pi interactions, we determined residue-specific pK(a) values of all four Lys side chains in all three cyclic peptides C(X). While NOE cross-peaks and perturbations of the chemical shifts clearly show the existence of the cation-pi interaction, pK(a) values of Lys3 in C(Tyr) and in C(Phe) differ only marginally from those values of other lysines in these dynamic peptides. Our experimental results with dynamic peptide systems highlight the role of cation-pi interactions in both intermolecular recognition at the protein-protein interface and intramolecular processes such as protein folding.  相似文献   

11.
Quantum chemical calculations are performed to gauge the effect of cation-pi and hydrogen bonding interactions on each other. M-phenol-acceptor (M = Li (+) and Mg (2+); acceptor = H(2)O, HCOOH, HCN, CH(3)OH, HCONH(2) and NH(3)) is taken as a model ternary system that exhibits the cation-pi and hydrogen bonding interactions. Cooperativity is quantified and the computed positive cooperativity between cation-pi and hydrogen bonding interactions is rationalized through reduced variational space (RVS) and charge analyses.  相似文献   

12.
Cation-pi interactions are increasingly recognized as important in chemistry and biology. Here we investigate the cation-pi interaction by determining its effect on the helicity of model peptides using a combination of CD and NMR spectroscopy. The data show that a single Trp/Arg interaction on the surface of a peptide can make a significant net favorable free energy contribution to helix stability if the two residues are positioned with appropriate spacing and orientation. The solvent-exposed Trp-->Arg (i, i + 4) interaction in helices can contribute -0.4 kcal/mol to the helix stability, while no free energy gain is detected if the two residues have the reversed orientation, Arg-->Trp (i, i + 4). The derived free energy is consistent with other experimental results studied in proteins or model peptides on cation-pi interactions. However in the same system the postulated Phe/Arg (i, i + 4) cation-pi interaction provides no net free energy to helix stability. Thus the Trp-->Arg interaction is stronger than Phe-->Arg. The cation-pi interactions are not sensitive to the screening effect by adding neutral salt as indicated by salt titration. Our results are in qualitative agreement with theoretical calculations emphasizing that cation-pi interactions can contribute significantly to protein stability with the order Trp > Phe. However, our and other experimental values are significantly smaller than estimates from theoretical calculations.  相似文献   

13.
Yun S  Kim YO  Kim D  Kim HG  Ihm H  Kim JK  Lee CW  Lee WJ  Yoon J  Oh KS  Yoon J  Park SM  Kim KS 《Organic letters》2003,5(4):471-474
[structure: see text] In consideration of competition between cation-pi and hydrogen bond interaction forces, we designed a novel receptor, 1,3,5-tris(pyrrolyl)benzene, which shows high selectivity for acetylcholine (ACh). The selectivity of the receptor for ACh over other ammonium cations is demonstrated by the ion-selective electrode (ISE) method in buffer solution. The binding free energy of the receptor with ACh in chloroform solution is measured to be 3.65 kcal/mol in the presence of chloride anion by nuclear magnetic resonance spectroscopy, and that in water is estimated to be much greater ( approximately 6 kcal/mol).  相似文献   

14.
Controlling molecular conformation is a significantly important issue in a wide variety of organic reactions because the ground state structure is significantly responsible for the transition one. As observed in enzymes and proteins, the cation-pi interaction plays a key role in the formation of the tertiary structure and the biochemical processes. Therefore, the cation-pi interaction would be a promising conformation-controlling tool not only in large molecules, but also in small molecules due to its stronger interaction force. This article describes the utility of the intramolecular cation-pi interaction in various organic syntheses with evidence for the existence of the cation-pi interactions.  相似文献   

15.
It has been assumed that the pi-electrons of aromatic residues in the catalytic sites of triterpene cyclases stabilize the cationic intermediates formed during the polycyclization cascade of squalene or oxidosqualene, but no definitive experimental evidence has been given. To validate this cation-pi interaction, natural and unnatural aromatic amino acids were site-specifically incorporated into squalene-hopene cyclase (SHC) from Alicyclobacillus acidocaldarius and the kinetic data of the mutants were compared with that of the wild-type SHC. The catalytic sites of Phe365 and Phe605 were substituted with O-methyltyrosine, tyrosine, and tryptophan, which have higher cation-pi binding energies than phenylalanine. These replacements actually increased the SHC activity at low temperature, but decreased the activity at high temperature, as compared with the wild-type SHC. This decreased activity is due to the disorganization of the protein architecture caused by the introduction of the amino acids more bulky than phenylalanine. Then, mono-, di-, and trifluorophenylalanines were incorporated at positions 365 and 605; these amino acids reduce cation-pi binding energies but have van der Waals radii similar to that of phenylalanine. The activities of the SHC variants with fluorophenylalanines were found to be inversely proportional to the number of the fluorine atoms on the aromatic ring and clearly correlated with the cation-pi binding energies of the ring moiety. No serious structural alteration was observed for these variants even at high temperature. These results unambiguously show that the pi-electron density of residues 365 and 605 has a crucial role for the efficient polycyclization reaction by SHC. This is the first report to demonstrate experimentally the involvement of cation-pi interaction in triterpene biosynthesis.  相似文献   

16.
The cation-pi interaction, a noncovalent interaction of electrostatic nature between a cation and an electron-rich pi system, is increasingly recognized as an important force that influences the structures and functions of molecules including proteins. Unlike other metal cations, the transition metal cation Cu2+ is not regarded to take part in a cation-pi interaction because Cu2+ tends to oxidize the pi electron system, in particular that of Trp, and to introduce covalency in the metal-pi electron interaction. This paper reports the first spectral evidence for the cation-pi interaction between Cu2+ and Trp. The Cu2+ ion bound to the amino N-terminal Cu2+/Ni2+ binding motif composed of three amino acid residues interacts with the indole ring of the fourth Trp residue in a noncovalent manner. The Cu2+-Trp interaction produces a distinct negative band at 223 nm in circular dichroism (CD), which disappears upon mutation or depletion of the Trp residue or upon replacement of the Cu2+ ion by Ni2+. In UV absorption, a pair of negative/positive intensity changes is generated at 222/231 nm by the Cu2+-Trp interaction, being consistent with the previous observations on the indole ring interacting with K+ or a cationic His imidazole ring. The negative CD band around 223 nm is characteristic of the Cu2+-Trp pair and may be useful as a marker of the Cu2+-Trp cation-pi interaction. Coordination of negatively charged ligands to Cu2+ is suggested to be important for the cation to be involved in a cation-pi interaction.  相似文献   

17.
We study the ligand (tetramethylammonium) recognition by the peripheral anionic site and its penetration of the human AChE gorge by using atomistic molecular dynamics simulations and our recently developed metadynamics method. The role of both the peripheral anionic site and the formation of cation-pi interactions in the ligand entrance are clearly shown. In particular, a simulation with the W286A mutant shows the fundamental role of this residue in anchoring the ligand at the peripheral anionic site of the enzyme and in positioning it prior to the gorge entrance. Once the ligand is properly oriented, the formation of specific and synchronized cation-pi interactions with W86, F295, and Y341 enables the gorge penetration. Eventually, the ligand is stabilized in a free energy basin by means of cation-pi interactions with W86.  相似文献   

18.
The cation-pi interaction influence on the conformation and binding of calix[4]arenes to alkali-metal cations has been studied using a dehydroxylated model. The model allows for the separation of cooperative cation-pi and electrostatic forces commonly found in the binding motifs found in calixarene complexes. Starting from the four well-known calix[4]arene conformations, six conformers for this dehydroxylated model (cone, partial cone, flattened cone, chair, 1,2-alternate, and 1,3-alternate) have been characterized by geometry optimization and frequency analysis using the Becke three-parameter exchange functional with the nonlocal correlation functional of Lee, Yang, and Parr and the 6-31G(d) basis set. Without the stabilization provided by the hydroxyl hydrogen bonds in calix[4]arene, neither the cone nor the 1,2-alternate conformation is computed to be a ground-state structure. The partial cone, flattened cone, chair, and 1,3-alternate conformers have been identified as ground-state structures in a vacuum, with the partial cone and the 1,3-alternate as the lowest energy minima in the aromatic model. The C(4)(v)() cone conformation is found to be a transition structure separating the flattened cone (C(2)(v)()) conformers. The energetic and structural preferences of the calix[4]arene model change dramatically when it is bound to Li(+), Na(+), and K(+). The number of pi-faces, the positioning of these pi-faces with respect to the cations, and the nature of the cation were studied as factors in the binding strength. A detailed study of the distances and angles between the aromatic ring centroids and the cations reveals the energetic advantages of multiple weak cation-pi interactions. The geometries are often far from the optimal cation-pi interaction in which the cation approaches in a perpendicular path the aromatic ring center, where the quadrupole moment is strongest. The results reveal that multiple weaker nonoptimal cation-pi interactions contribute significantly to the overall binding strength. This theoretical analysis underscores the importance of neighboring aromatic faces and provides new insight into the significance of cation-pi binding, not only for calix[4]arenes, but also for other supramolecular and biological systems.  相似文献   

19.
Threshold collision-induced dissociation techniques are employed to determine bond dissociation energies (BDEs) of mono- and bis-complexes of alkali metal cations, Li+, Na+, K+, Rb+, and Cs+, with indole, C8H7N. The primary and lowest energy dissociation pathway in all cases is endothermic loss of an intact indole ligand. Sequential loss of a second indole ligand is observed at elevated energies for the bis-complexes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Theoretical BDEs are determined from single point energy calculations at the MP2(full)/6-311+G(2d,2p) level using the B3LYP/6-31G* geometries. The agreement between theory and experiment is very good for all complexes except Li+ (C8H7N), where theory underestimates the strength of the binding. The trends in the BDEs of these alkali metal cation-indole complexes are compared with the analogous benzene and naphthalene complexes to examine the influence of the extended pi network and heteroatom on the strength of the cation-pi interaction. The Na+ and K+ binding affinities of benzene, phenol, and indole are also compared to those of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan to elucidate the factors that contribute to the binding in complexes to the aromatic amino acids. The nature of the binding and trends in the BDEs of cation-pi complexes between alkali metal cations and benzene, phenol, and indole are examined to help understand nature's preference for engaging tryptophan over phenylalanine and tyrosine in cation-pi interactions in biological systems.  相似文献   

20.
The Car-Parrinello molecular dynamics (CPMD) method was used to study the dynamic characteristics of the cation-pi interaction between ammonium and benzene in gaseous and aqueous media. The results obtained from the CPMD calculation on the cation-pi complex in the gaseous state were very similar to those calculated from the Gaussian98 program with DFT and MP2 algorithms, demonstrating that CPMD is a valid approach for studying this system. Unlike the interaction in the gaseous state, our 12-ps CPMD simulation showed that the geometry of the complex in aqueous solution changes frequently in terms of the interaction angles and distances. Furthermore, the simulation revealed that the ammonium is constantly oscillating above the benzene plane in an aqueous environment and interacts with benzene mostly through three of its hydrogen atoms. In contrast, the interaction of the cation with the aromatic molecule in the gaseous state involves two hydrogen atoms. In addition, the free energy profile in aqueous solution was studied using constrained CPMD simulations, resulting in a calculated binding free energy of -5.75 kcal/mol at an optimum interaction distance of approximately 3.25 A, indicating that the cation-pi interaction between ammonium and benzene is stable even in aqueous solution. Thus, this CPMD study suggested that the cation-pi interaction between an ammonium (group) and an aromatic structure could take place even on surfaces of protein or nucleic acids in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号