首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of fac-[NEt(4)](2)[Re(CO)(3)Br(3)] with (S)-(2-(2'-pyridyl)ethyl)cysteamine, L(1), in methanol leads to the formation of the cationic fac-[Re(CO)(3)(NSN)][Br] complex, 1, with coordination of the nitrogen of the pyridine, the sulfur of the thioether, and the nitrogen of the primary amine. When fac-[NEt(4)](2)[Re(CO)(3)Br(3)] reacts with the homocysteine derivative (S)-(2-(2'-pyridyl)ethyl)-d,l-homocysteine, L(2), the neutral fac-Re(CO)(3)(NSO) complex, 2, is produced with coordination of the nitrogen of the primary amine, the sulfur of the thioether, and the oxygen of the carboxylate group, while the pyridine ring remains uncoordinated. The analogous technetium-99m complexes, 1' and 2', were also prepared quantitatively by the reaction of L(1) and L(2) with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor at 70 degrees C in water. Given that both (S)-(2-(2'-pyridyl)ethyl)cysteamine and homocysteine can be easily N- or S-derivatized by a bioactive molecule of interest, both the NSN or NSO ligand systems could be used to develop target-specific radiopharmaceuticals for diagnosis and therapy.  相似文献   

2.
To study the interaction of the fac-[M(CO)(3)](+) moiety (M = (99m)Tc, (188)Re) with DNA bases, we reacted [M(OH(2))(3)(CO)(3)](+) with 9-methylguanine (9-MeG), guanosine (G), and 2-deoxyguanosine (2dG). Two bases bind to the metal center via the N7 atoms. X-ray structure analysis of [(99)Tc(CH(3)OH)(9-MeG)(2)(CO)(3)](+) (4) (monoclinic, I2/a, a = 28.7533(14) A, b = 8.0631(4) A, c = 32.3600(15) A, beta = 91.543(6) degrees, V = 7499.6(6) A(3), Z = 8) and [Re(OH(2))(9-MeG)(2)(CO)(3)](+) (7) (monoclinic, P2(1)/n, a = 12.2873(11) A, b = 16.0707(13) A, c = 14.1809(16) A, beta = 103.361(12) degrees, V = 2724.4(5) A(3), Z = 4) reveals that the two bases are in a head-to-tail (HT) orientation. Kinetic studies show that the rates of substitution of the purine bases are comparable to that of one of the active forms of cisplatin. The bis-substituted complexes are generally less stable than the platinum adducts, and metalation of the bases is reversible.  相似文献   

3.
The nature and dynamics of the lowest excited states of fac-[Re(I)(L)(CO)(3)(phen)](+) and fac-[Re(I)(L)(CO)(3)(5-NO(2)-phen)](+) [L = Cl(-), 4-ethyl-pyridine (4-Etpy), imidazole (imH); phen = 1,10-phenanthroline] have been investigated by picosecond visible and IR transient absorption spectroscopy in aqueous (L = imH), acetonitrile (L = 4-Etpy, imH), and MeOH (L = imH) solutions. The phen complexes have long-lived Re(I) --> phen (3)MLCT excited states, characterized by CO stretching frequencies that are upshifted relative to their ground-state values and by widely split IR bands due to the out-of-phase A'(2) and A"nu(CO) vibrations. The lowest excited states of the 5-NO(2)-phen complexes also have (3)MLCT character; the larger upward nu(CO) shifts accord with much more extensive charge transfer from the Re(I)(CO)(3) unit to 5-NO(2)-phen in these states. Transient visible absorption spectra indicate that the excited electron is delocalized over the 5-NO(2)-phen ligand, which acquires radical anionic character. Similarly, involvement of the -NO(2) group in the Franck-Condon MLCT transition is manifested by the presence of an enhanced nu(NO(2)) band in the preresonance Raman spectrum of [Re(I)(4-Etpy)(CO)(3)(5-NO(2)-phen)](+). The Re(I) --> 5-NO(2)-phen (3)MLCT excited states are very short-lived: 7.6, 170, and 43 ps for L = Cl(-), 4-Etpy, and imH, respectively, in CH(3)CN solutions. The (3)MLCT excited state of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) is even shorter-lived in MeOH (15 ps) and H(2)O (1.3 ps). In addition to (3)MLCT, excitation of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) populates a (3)LLCT (imH --> 5-NO(2)-phen) excited state. Most of the (3)LLCT population decays to the ground state (time constants of 19 (H(2)O), 50 (MeOH), and 72 ps (CH(3)CN)); in a small fraction, however, deprotonation of the imH.+ ligand occurs, producing a long-lived species, [Re(I)(im.)(CO)(3)(5-NO(2)-phen).-]+.  相似文献   

4.
We have prepared four complexes of the type [Re(guanine)(2)(X)(CO)(3)] (guanine = 9-methylguanine or 7-methylguanine, X = H(2)O or Br) in order to understand the factors determining the orientation of coordinated purine ligands around the [Re(CO)(3)](+) core. The 9-methylguanine ligand (9-MeG) was chosen as the simplest N(9) derivatized guanine, and 7-methylguanine (7-MeG) was chosen because metal binding to N(9) does not impose steric hindrance. Two types of structures have been elucidated by X-ray crystallography, an HH (head-to-head) and HT (head-to-tail) conformer for each of the guanines. All complexes crystallize in monoclinic space groups: [Re(9-MeG)(2)(H(2)O)(CO)(3)]ClO(4) (2) in P2(1)/n with a = 12.3307(10) A, b = 16.2620(14) A, c = 13.7171(11) A, and beta = 105.525(9) degrees, V = 2650.2(4) A(3), with the two bases in HT orientation and its conformer [Re(9-MeG)(2)(H(2)O)(CO)(3)]Br (3) in P2(1)/n with a = 15.626(13) A, b = 9.5269(5) A, c = 15.4078(13) A, and beta = 76.951(1) degrees, V = 2234.5(3) A(3), and the two bases in an HH orientation. Similarly, [Re(7-MeG)(2)(H(2)O)(CO)(3)]ClO(4) (4) crystallizes in P2(1)/c with a = 13.0708(9) A, b = 15.4082(7) A, c = 14.316(9) A, and beta = 117.236(7) degrees, V = 2563.5(3) A(3), and exhibits an HT orientation and [ReBr(7-MeG)(2)(CO)(3)] (5) in P2/c with a = 17.5117(9) A, b = 9.8842(7) A, c = 15.3539(1) A, and beta = 100.824(7) degrees, V = 2610.3(3) A(3), and shows an HH orientation. When crystals of any of these complex pairs are dissolved in D(2)O, the (1)H NMR spectrum shows a single peak for the H(8) resonance of the respective coordinated purine indicating a rapid equilibrium between HH and HT conformations in solution. DFT calculations simulating the rotation of one ligand around its Re-N bond showed energetic barriers of less than 8.7 kcal/mol. We find no hypochromic effect in the Raman spectrum of 3, which showed base stacking in the solid state. Neither steric interactions nor hydrogen bonding are important in determining the orientation of the ligands in the coordination sphere.  相似文献   

5.
Wu W  Fanwick PE  Walton RA 《Inorganic chemistry》1996,35(19):5484-5491
The reactions of the unsymmetrical, coordinatively unsaturated dirhenium(II) complexes [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)]Y (XylNC = 2,6-dimethylphenyl isocyanide; Y = O(3)SCF(3) (3a), PF(6) (3b)) with XylNC afford at least three isomeric forms of the complex cation [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+). Two forms have very similar bis(&mgr;-halo)-bridged edge-sharing bioctahedral structures of the type [(CO)BrRe(&mgr;-Br)(2)(&mgr;-dppm)(2)Re(CNXyl)(2)]Y (Y = O(3)SCF(3) (4a/4a'), PF(6) (4b/4b')), while the third is an open bioctahedron [(XylNC)(2)BrRe(&mgr;-dppm)(2)ReBr(2)(CO)]Y (Y = O(3)SCF(3) (5a), PF(6) (5b)). While the analogous chloro complex cation [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+) was previously shown to exist in three isomeric forms, only one of these has been found to be structurally similar to the bromo complexes (i.e. the isomer analogous to 5a and 5b). The reaction of 3a with CO gives the salt [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3) (7), in which the edge-sharing bioctahedral cation [(XylNC)BrRe(&mgr;-Br)(&mgr;-CO)(&mgr;-dppm)(2)ReBr(CO)](+) has an all-cis arrangement of pi-acceptor ligands. The Re-Re distances in the structures of 4b', 5a, and 7 are 3.0456(8), 2.3792(7), and 2.5853(13) ?, respectively, and accord with formal Re-Re bond orders of 1, 3, and 2, respectively. Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](PF(6))(0.78)(ReO(4))(0.22).CH(2)Cl(2) (4b') at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 19.845(4) ?, b = 16.945(5) ?, c = 21.759(3) ?, beta = 105.856(13) degrees, V = 7038(5) ?(3), and Z = 4. The structure was refined to R = 0.060 (R(w) = 0.145) for 14 245 data (F(o)(2) > 2sigma(F(o)(2))). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)]O(3)SCF(3).C(6)H(6) (5a) at 173 K: monoclinic space group P2(1)/n (No. 14) with a = 14.785(3) ?, b = 15.289(4) ?, c = 32.067(5) ?, beta = 100.87(2) degrees, V=7118(5) ?(3), and Z = 4. The structure was refined to R = 0.046 (R(w) = 0.055) for 6962 data (I > 3.0sigma(I)). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3).Me(2)CHC(O)Me (7) at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 14.951(2) ?, b = 12.4180(19) ?, c = 40.600(5) ?, beta = 89.993(11) degrees, V = 7537(3) ?(3), and Z = 4. The structure was refined to R = 0.074 (R(w) = 0.088) for 6595 data (I > 3.0sigma(I)).  相似文献   

6.
Parallel studies of the preparation of Re and (99m)Tc agents aid in interpreting the nature of tracer (99m)Tc radiopharmaceuticals. Aqueous solutions of the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) cation are gaining wide use and are readily prepared, but such solutions of the fac-[Re(CO)(3)(H(2)O)(3)](+) cation (1) are not so easily accessible. Herein we describe a new, reliable, and straightforward preparation of aqueous solutions of 1, characterized by HPLC and ESI-MS. Treatment of solutions of 1 with thioether-bearing amino acids, AAH = S-methyl-l-cysteine (MECYSH), S-propyl-l-cysteine (PRCYSH), and methionine (METH), gave high yields of fac-Re(CO)(3)AA complexes. X-ray crystallographic and NMR analyses indicated that MECYS(-), PRCYS(-), and MET(-) were bound in fac-Re(CO)(3)AA complexes as tridentate monoanionic ligands through amino, thioether, and alpha-carboxyl groups. In CD(3)OD, (1)H NMR spectra have broad signals but have two sets of signals at -10 degrees C, consistent with two isomers with different configurations at the pyramidal sulfur; these interconvert slowly on the NMR time scale at low temperatures. Indeed, the crystal structure of the fac-Re(CO)(3)(PRCYS) reveals a mixture of the two possible diastereoisomers. S-(Carboxymethyl)-l-cysteine (CCMH(2)) and 1 gave two products, 5A (kinetically favored) and 5B (thermodynamically favored). X-ray crystallographic analyses of a crystal of 5B and of a 1:1 cocrystal of 5A and 5B showed that 5A and 5B are diastereoisomers with the CCMH(-) alpha-carboxyl group dangling. In addition to the amino and thioether groups, the S-(carboxymethyl) carboxyl group is coordinated, a feature that slows interconversion of diastereoisomers relative to the other fac-Re(CO)(3)AA complexes because interconversion can now occur only after the rupture of Re-ligand bonds. These N, O, and S tridentate adducts are quite stable, and the grouping has promise in (99m)Tc(CO)(3) tracer development.  相似文献   

7.
The triplet metal-to-ligand charge transfer ((3)MLCT) dynamics of two structurally characterized Re(I)(CO)(3)(phen)(HisX)-modified (phen = 1,10-phenanthroline; X = 83, 109) Pseudomonas aeruginosa azurins have been investigated by picosecond time-resolved infrared (TRIR) spectroscopy in aqueous (D(2)O) solution. The (3)MLCT relaxation dynamics exhibited by the two Re(I)-azurins are very different from those of the sensitizer [Re(I)(CO)(3)(phen)(im)](+) (im = imidazole). Whereas the Re(I)(CO)(3) intramolecular vibrational relaxation in Re(I)(CO)(3)(phen)(HisX)Az (4 ps) is similar to that of [Re(I)(CO)(3)(phen)(im)](+) (2 ps), the medium relaxation is much slower ( approximately 250 vs 9.5 ps); the 250-ps relaxation is attributable to reorientation of D(2)O molecules as well as structural reorganization of the rhenium chromophore and nearby polar amino acids in each of the modified proteins.  相似文献   

8.
Half-sandwich complexes of the type [(RCOCp)M(CO)(3)] with M = Re and (99(m))Tc were synthesized from [M(OH(2))(3)(CO)(3)](+) in water. The R group can be an organic residue or a receptor binding biomolecule with a spacer to cyclopentadienyl (Cp). This provides a general route to Cp complexes of technetium without the need for starting from [TcBr(CO)(5)]. The X-ray structure of [(C(6)H(5)CH(2)COC(5)H(4))Tc(CO)(3)] has been elucidated. The compound crystallizes in the monoclinic space group P2(1)/c with a = 16.1454(9), b = 7.6300(6), and c = 12.3922(7) A and beta = 107.792(6) degrees. We have chosen a serotonergic receptor ligand (WAY) as an example for the derivatization of Cp with a bioactive molecule. WAY is linked to Cp by an aliphatic chain of variable length. The half-sandwich complexes were prepared from water and organic solvents. The structure of [(WAY4-Cp)Re(CO)(3)] could be elucidated. The compound crystallizes in the monoclinic space group P2(1)/c with a = 15.7112(6), b = 6.8775(3), and c = 25.5217(12) A and beta = 103.778(5) degrees. Quantification of inhibition constants gave a clear structure-activity relationship. A single methylene group between the receptor binding site and the half-sandwich complex gave an IC(50) of 217 nM for HT(1A), whereas a butylene linker resulted in retention of the inhibition constant with an IC(50) of 6 nM with respect to underivatized WAY. For use as radiopharmaceuticals, the compounds have also been prepared with (99m)Tc in quantitative yield.  相似文献   

9.
Schutte M  Kemp G  Visser HG  Roodt A 《Inorganic chemistry》2011,50(24):12486-12498
A range of fac-[Re(CO)(3)(L,L'-Bid)(H(2)O)](n) (L,L'-Bid = neutral or monoanionic bidentate ligands with varied L,L' donor atoms, N,N', N,O, or O,O': 1,10-phenanthroline, 2,2'-bipydine, 2-picolinate, 2-quinolinate, 2,4-dipicolinate, 2,4-diquinolinate, tribromotropolonate, and hydroxyflavonate; n = 0, +1) has been synthesized and the aqua/methanol substitution has been investigated. The complexes were characterized by UV-vis, IR and NMR spectroscopy and X-ray crystallographic studies of the compounds fac-[Re(CO)(3)(Phen)(H(2)O)]NO(3)·0.5Phen, fac-[Re(CO)(3)(2,4-dQuinH)(H(2)O)]·H(2)O, fac-[Re(CO)(3)(2,4-dQuinH)Py]Py, and fac-[Re(CO)(3)(Flav)(CH(3)OH)]·CH(3)OH are reported. A four order-of-magnitude of activation for the methanol substitution is induced as manifested by the second order rate constants with (N,N'-Bid) < (N,O-Bid) < (O,O'-Bid). Forward and reverse rate and stability constants from slow and stopped-flow UV/vis measurements (k(1), M(-1) s(-1); k(-1), s(-1); K(1), M(-1)) for bromide anions as entering nucleophile are as follows: fac-[Re(CO)(3)(Phen)(MeOH)](+) (50 ± 3) × 10(-3), (5.9 ± 0.3) × 10(-4), 84 ± 7; fac-[Re(CO)(3)(2,4-dPicoH)(MeOH)] (15.7 ± 0.2) × 10(-3), (6.3 ± 0.8) × 10(-4), 25 ± 3; fac-[Re(CO)(3)(TropBr(3))(MeOH)] (7.06 ± 0.04) × 10(-2), (4 ± 1) × 10(-3), 18 ± 4; fac-[Re(CO)(3)(Flav)(MeOH)] 7.2 ± 0.3, 3.17 ± 0.09, 2.5 ± 2. Activation parameters (ΔH(k1)(++), kJmol(-1); ΔS(k1)(), J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Re(CO)(3)(Phen)(MeOH)](+) iodide 70 ± 1, -35 ± 3; fac-[Re(CO)(3)(2,4-dPico)(MeOH)] bromide 80.8 ± 6, -8 ± 2; fac-[Re(CO)(3)(Flav)(MeOH)] bromide 52 ± 5, -52 ± 15. A dissociative interchange mechanism is proposed.  相似文献   

10.
Rhenium(I) compounds [Re(CO)(3)(Hdmpz)(2)(ampy)]BAr'(4) and [Re(CO)(3)(N-MeIm)(2)(ampy)]BAr'(4) (Hdmpz = 3,5-dimethylpyrazole, N-MeIm = N-methylimidazole, ampy = 2-aminopyridine or 3-aminopyridine) have been prepared stepwise as the sole reaction products in good yields. The cationic complexes feature two different types of hydrogen bond donor ligands, and their anion binding behavior has been studied both in solution and in the solid state. Compounds with 2-ampy ligands are labile in the presence of nearly all of the anions tested. The X-ray structure of the complex [Re(CO)(3)(Hdmpz)(2)(ampy)](+) (2) shows that the 2-ampy ligand is metal-coordinated through the amino group, a fact that can be responsible for its labile character. The 3-ampy derivatives (coordinated through the pyridinic nitrogen atom) are stable toward the addition of several anions and are more selective anion hosts than their tris(pyrazole) or tris(imidazole) counterparts. This selectivity is higher for compound [Re(CO)(3)(N-MeIm)(2)(MeNA)]BAr'(4) (5·BAr'(4), MeNA = N-methylnicotinamide) that features an amido moiety, which is a better hydrogen bond donor than the amino group. Some of the receptor-anion adducts have been characterized in the solid state by X-ray diffraction, showing that both types of hydrogen bond donor ligands of the cationic receptor participate in the interaction with the anion hosts. DFT calculations suggest that coordination of the ampy ligands is more favorable through the amino group only for the cationic complex 2, as a consequence of the existence of a strong intramolecular hydrogen bond. In all other cases, the pyridinic coordination is clearly favored.  相似文献   

11.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

12.
N-(2-Mercaptoethyl)picolylamine (MEPAH) was studied as a potentially biologically relevant ligand for the "fac-[M(CO)(3)](+)" core (M = Re, (99)Tc, (99m)Tc). To this end, the complex Re(CO)(3)(MEPA) was synthesized. The reaction of MEPAH with fac-[Re(CO)(3)(MeCN)(3)](+) took place over the course of seconds, showing the high affinity possessed by this ligand for the "fac-[Re(CO)(3)](+)" core. A single-crystal X-ray diffraction study was performed confirming the nature of Re(CO)(3)(MEPA), a rare mononuclear rhenium(I) thiolate complex. Additional exploration into derivatization of the ligand backbone has afforded the analogous N-ethyl complex, Re(CO)(3)(MEPA-NEt). The high affinity of the ligand for the metal coupled with the ease of its derivatization implies that utilization of this ligand system for the purposes of (99m)Tc-radiopharmaceutical development is promising.  相似文献   

13.
We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.  相似文献   

14.
Water- and air-stable complexes comprising the cis-[Re(CO)(2)](+) core can be synthesized from the (Et(4)N)[ReBr(2)(NCCH(3))(2)(CO)(2)] precursor . Complex showed distinctly different chemical and electronic behaviour compared to [ReBr(3)(CO)(3)](2-). Substituting the two bromides in with imidazole-like ligands or alpha,alpha'-diimines gave new complexes with potential applications in bioinorganic chemistry and photochemistry. The two acetonitrile ligands are very stably bound and could not be replaced. Under CO pressure, the uncommon complex mer-[ReBr(NCCH(3))(2)(CO)(3)] was formed from . The reaction of with the tetradentate ligand bis(2-pyridylmethyl)glycine (BPG) finally induced a four fold substitution at the metal center to form a [Re(CO)(2)(L(4))](+)-type complex.  相似文献   

15.
16.
The gas-phase reactions of a series of (di)manganese carbonyl positive ions with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me(3)TACN) have been examined with the aid of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The monomanganese carbonyl ions, [Mn(CO)(n)](+) (n = 2-5), react predominantly by ligand exchange and to a minor extent by electron transfer with the formation of the radical cation of Me(3)TACN. For the [Mn(CO)(n)](+) (n = 2-4) ions, the ligand exchange results in the exclusive formation of a [Mn(Me(3)TACN)](+) complex, whereas small amounts of [Mn(CO)(Me(3)TACN)](+) ions are also generated in the reactions of the [Mn(CO)(5)](+) ion. The [Mn(2)(CO)(n)](+) ions (n = 2, 4 and 5) react also by competing electron transfer and ligand exchange. The reaction of the [Mn(2)(CO)(2)](+) and [Mn(2)(CO)(4)](+) ions is associated with cleavage of the Mn--Mn bond as evidenced by the pronounced formation of [Mn(Me(3)TACN)](+) ions. For [Mn(2)(CO)(5)](+), the ligand exchange leads mainly to the formation of [Mn(2)(CO)(n)(Me(3)TACN)](+) (n = 1-3) ions. These primary product ions react subsequently by the incorporation of a second Me(3)TACN molecule to afford [Mn(2)(CO)(Me(3)TACN)(2)](+) and [Mn(2)(CO)(2)(Me(3)TACN)(2)](+) ions. Both of these latter species incorporate an oxygen molecule with formation of ions with the assigned composition of [Mn(2)(O(2))(CO)(Me(3)TACN)(2)](+) and [Mn(2)(O(2))(CO)(2)(Me(3)TACN)(2)](+).  相似文献   

17.
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (3)MLCT. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi orbital upon excitation are evident by the upward shift of nu(CO) vibrations and a downward shift of the ketone nu(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (3)MLCT excited state is indicated by time-resolved visible and resonance Raman (TR(3)) spectra that show features typical of bopy(*)(-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (3)MLCT excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of nu(C(triple bond)O) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)]PF(6).CH(3)CN has been determined.  相似文献   

18.
Magnetite-filled micelles capture fac-[M(OH(2))(3)(CO)(3)](+) complexes (M = (99m)Tc, Re), creating versatile self-assembled constructs for multimodal SPECT/MR/optical imaging and radiopharmaceutical guided delivery.  相似文献   

19.
The novel trihydro(mercaptoazolyl)borates Na[H(3)B(tim(Me))] (L(1)) (tim(Me) = 2-mercapto-1-methylimidazolyl), Na[H(3)B(tim(Bupip))] (L(2)) (tim(Bupip) = 1-[4-((2-methoxyphenyl)-1-piperazinyl)butyl]-2-mercaptoimidazolyl), and Na[H(3)B(bzt)] (L(3)) (bzt = 2-mercaptobenzothiazolyl) were synthesized by reaction of NaBH(4) with the corresponding azole. Ligands L(1)-L(3) represent a new class of light and soft scorpionates that stabilizes the [M(CO)(3)](+) core (M = (99)Tc, Re) by formation of the complexes fac-[M{kappa(3)-H(mu-H)(2)B(tim(Me))}(CO)(3)] (M = (99)Tc (1), Re (2)), fac-[Re{kappa(3)-H(mu-H)(2)B(tim(Bupip))}(CO)(3)] (3), and fac-[Re{kappa(3)-H(mu-H)(2)B(bzt)}(CO)(3)] (4), respectively. The soft scorpionates are coordinated to the metal in unique (kappa(3)-H, H', S) fashion, as confirmed by X-ray crystallography of 1, 2, and 4. These complexes with bis-agostic hydride coordination are formed in aqueous solution with the two hydrides replacing two coordinating aquo ligands. The agostic hydrogen atoms were located directly, confirming an unprecedented donor atom set combining one sulfur and two hydrogen atoms. Preliminary studies have shown the possibility of preparing some of these complexes at the no carrier added level ((99m)Tc), under conditions as required in radiopharmaceutical preparation. Due to their lipophilicity, small-size, and easy functionalization with adequate biomolecules, the trihydro(mercaptoazolyl)borate technetium tricarbonyl complexes are suitable for the design of CNS receptor ligand radiopharmaceuticals as exemplified with 3, comprising a pendant serotonergic 5-HT(1A) ligand. The integrated design of radiopharmaceuticals involving a bis-agostic scorpionate ligand is demonstrated by the synthesis of 4, with an integrated benzothiazolyl fragment for the recognition of beta-amyloid plaques.  相似文献   

20.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号