首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu B  Li L  Zhang Y  Ma Y  Hu H  Xue G 《Inorganic chemistry》2011,50(18):9172-9177
Three polyoxometalates encapsulating high-nuclearity magnetic clusters MFe(5), [As(2)MFe(5)Mo(22)O(85)(H(2)O)](n-) (M = Fe(3+), n = 14; M = Ni(2+) and Mn(2+), n = 15), were synthesized and characterized by single-crystal X-ray diffraction, elemental analysis, infrared spectroscopy, thermogravimetric analysis, and magnetism measurements. The polyanion [As(2)MFe(5)Mo(22)O(85)(H(2)O)](n-) consists of a central MMo(7)O(28) (M = Fe(3+), Ni(2+), and Mn(2+)) fragment and two AsMo(7)O(27) fragments linked together by two trimeric clusters, Fe(2)MoO(μ(2)-O)(2) and Fe(3)(H(2)O), to form a banana-shaped structure with C(1) symmetry. The MMo(7)O(28) and AsMo(7)O(27) units have a similar structure and can be considered as a monocapped hexavacant α-B-Keggin subunit with a central MO(4) group or a central As(III)O(3) group. The polyoxometalates have a low absorption of υ(Mo-O(d)) (925-913 cm(-1)) because most of the Mo atoms in the polyanions have at least two longer Mo-O(d) bonds. The framework of the arsenomolybdates is stable before As(2)O(3) escaping (ca. 300 °C). The analysis of magnetostructural correlations and magnetism measurements indicate the coexistence of ferro- and antiferromagnetic interactions, which give an overall ferromagnetic spin ground state in the compounds.  相似文献   

2.
Kong Z  Weng L  Tan D  He H  Zhang B  Kong J  Yue B 《Inorganic chemistry》2004,43(18):5676-5680
The hydrothermal reaction of (NH(4))(6)Mo(7)O(24).4H(2)O, CuCl(2).2H(2)O, and 4,4'-bipyridine yields bipyridine-ligated copper-trimolybdate monohydrate [Cu(4,4'-bipy)(H(2)O)(Mo(3)O(10))].H(2)O in the monoclinic system with space group of C(2/c) and cell parameters of a = 15.335(2) A, b = 15.535(2) A, c = 15.106(2) A, beta = 101.162(2) degrees, V = 3530.7(9) A(3), and Z = 8. Its structure consists of one-dimensional infinite ([Mo3O10]2-)( infinity ) chains linked through [Cu2(H2O)2(4,4'-bipy)] units. The Mo-O chain contains distorted [MoO(6)] octahedra connected through corner-sharing oxygen atoms into infinite chains along the c direction and each chain is located in the channel formed by four adjacent crossing chains of [Cu(4,4'-bipy)(H2O)](n)(2n+). The crystal shows weak conductivity through Mo-O chain along the c direction and insulating property along either a or b direction. Furthermore, a crystalline bimetallic oxide, CuMo3O10, forms when the title compound undergoes thermal treatment in N(2) atmosphere after the complete removal of the ligands.  相似文献   

3.
The reaction of nucleobases (adenine or purine) with a metallic salt in the presence of potassium oxalate in an aqueous solution yields one-dimensional complexes of formulas [M(mu-ox)(H(2)O)(pur)](n) (pur = purine, ox = oxalato ligand (2-); M = Cu(II) [1], Co(II) [2], and Zn(II) [3]), [Co(mu-ox)(H(2)O)(pur)(0.76)(ade)(0.24)](n)(4) and ([M(mu-ox)(H(2)O)(ade)].2(ade).(H(2)O))(n) (ade = adenine; M = Co(II) [5] and Zn(II) [6]). Their X-ray single-crystal structures, variable-temperature magnetic measurements, thermal behavior, and FT-IR spectroscopy are reported. The complexes 1-4 crystallize in the monoclinic space group P2(1)/a (No. 14) with similar crystallographic parameters. The compounds 5 and 6 are also isomorphous but crystallize in the triclinic space group P (No. 2). All compounds contain one-dimensional chains in which cis-[M(H(2)O)(L)](2+) units are bridged by bis-bidentate oxalato ligands with M(.)M intrachain distances in the range 5.23-5.57 A. In all cases, the metal atoms are six-coordinated by four oxalato oxygen atoms, one water molecule, and one nitrogen atom from a terminal nucleobase, building distorted octahedral MO(4)O(w)N surroundings. The purine ligand is bound to the metal atom through the most basic imidazole N9 atom in 1-4, whereas in 5 and 6 the minor groove site N3 of the adenine nucleobase is the donor atom. The crystal packing of compounds 5 and 6 shows the presence of uncoordinated adenine and water crystallization molecules. The cohesiveness of the supramolecular 3D structure of the compounds is achieved by means of an extensive network of noncovalent interactions (hydrogen bonds and pi-pi stacking interactions). Variable-temperature magnetic susceptibility measurements of the Cu(II) and Co(II) complexes in the range 2-300 K show the occurrence of antiferromagnetic intrachain interactions.  相似文献   

4.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

5.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

6.
Voltammetric, photo-physical and photo-electrochemical properties of the Dawson polyoxometalate anions alpha-[S(2)M(18)O(62)](4-) (M = Mo, W) are presented, both in the presence and absence of a series of [Ru(II)L(n)](+/2+) cations [L(n) = (bpy)(3), (bpy)(2)(Im)(2), (bpy)(2)(dpq), (bpy)(2)(box) and (biq)(2)(box)]. Electrochemical processes for both the anion and Ru(II/III) couples were detected in solutions of the salts [Ru(II)L(n)](2)[S(2)M(18)O(62)] in dimethylformamide (0.1 M Bu(4)NPF(6)) by both cyclic and hydrodynamic voltammetries. Responses were also detected when the solid salts were adhered to the surface of a glassy carbon electrode in contact with an electrolyte in which they are insoluble (CH(3)CN; 0.1M Bu(4)NPF(6)). Photolysis experiments were performed on solutions of the salts [R(4)N](4)[S(2)M(18)O(62)] (R = n-butyl or n-hexyl) and [Ru(II)L(n)](2)[S(2)M(18)O(62)] at 355 and 420 nm in dimethylformamide and acetonitrile in the presence and absence of benzyl alcohol (10% v/v). When associated with [Ru(bpy)(3)](2+), the molybdate anion exhibited a large increase in the quantum yield for photo-reduction at 420 nm. The quantum yield for the tungstate analogue was lower but the experiments again provided clear evidence for sensitization of the photo-reduction reaction in the visible spectral region. The origin of this sensitization is ascribed to the new optical transition observed around 480 nm in static ion clusters {[Ru(bpy)(3)][S(2)M(18)O(62)]}(2-) and {[Ru(bpy)(3)](2)[S(2)M(18)O(62)]} present in solution. Measurable photocurrents resulted from irradiation of solutions of the anions with white light in the presence of the electron donor dimethylformamide. Evidence is also presented for possible quencher-fluorophore interactions in the presence of certain [Ru(II)L(n)](+) cations.  相似文献   

7.
The spectroscopic and photophysical properties of [Ru(bpy)(3)](2)[[Mo(18)O(54)(SO(3))(2)], where bpy is 2,2'-bipyridyl and [Mo(18)O(54)(SO(3))(2)](4-) is either the α or β-sulfite containing polyoxomolybdate isomer, have been measured and compared with those for the well known but structurally distinct sulfate analogue, α-[Mo(18)O(54)(SO(4))(2)](4-). Electronic difference spectroscopy revealed the presence of new spectral features around 480 nm, although they are weak in comparison with the [Ru(bpy)(3)](2)[Mo(18)O(54)(SO(4))(2)] analogue. Surprisingly, Stern-Volmer plots of [Ru(bpy)(3)](2+) luminescence quenching by the polyoxometallate revealed the presence of both static and dynamic quenching for both α and β-[Mo(18)O(54)(SO(3))(2)](4-). The association constant inferred for the ion cluster [Ru(bpy)(3)](2)α-[Mo(18)O(54)(SO(4))(2)] is K = 5.9 ± 0.56 × 10(6) and that for [Ru(bpy)(3)](2)β-[Mo(18)O(54)(SO(4))(2)] is K = 1.0 ± 0.09 × 10(7). Unlike the sulfate polyoxometalates, both sulfite polyoxometalate-ruthenium adducts are non-luminescent. Despite the strong electrostatic association in the adducts resonance Raman and photoelectrochemical studies suggests that unlike the sulfato polyoxometalate analogue there is no sensitization of the polyoxometalate photochemistry by the ruthenium centre for the sulfite anions. In addition, the adducts exhibit photochemical lability in acetonitrile, attributable to decomposition of the ruthenium complex, which has not been observed for other [Ru(bpy)(3)](2+) -polyoxometalate adducts. These observations suggest that less electronic communication exists between the [Ru(bpy)(3)](2+) and the sulfite polyoxoanions relative to their sulfate polyoxoanion counterparts, despite their structural and electronic analogy. The main distinction between sulfate and sulfite polyoxometalates lies in their reversible reduction potentials, which are more positive by approximately 100 mV for the sulfite anions. This suggests that the capacity for [Ru(bpy)(3)](2+) or analogues to sensitize photoreduction in the adducts of polyoxometalates requires very sensitive redox tuning.  相似文献   

8.
Tris(bipyridine)ruthenium(II) is used as a templating agent to insert palladium(II) into three-dimensional oxalate-based networks. The templated-assembly of [Ru(bpy)(3)][Pd(2)(ox)(3)] (Pd(2)) and [Ru(bpy)(3)][PdMn(ox)(3)] (PdMn) is described. The latter compound is structurally characterized by powder X-ray diffraction and X-ray absorption spectroscopy. These techniques reveal an unusual 6-fold oxygen environment around the Pd(II) atoms with two short (2.02 Angstrom) and four long (2.17 Angstrom) Pd-O distances. As stated by magnetometry, this environment is associated with a triplet ground state (S = 1) of the palladium(II) ion: when the temperature is decreased, the chiMT product shows a monotonous decrease from 5.54 cm(3) K mol(-1) at 300 K, a value which is slightly lower than the one expected for independent paramagnetic Pd(II) (S = 1, g = 2) and Mn(II) (S = 5/2, g = 2) ions. This thermal variation is due to antiferromagnetic exchange interactions between the two spin bearers. Nevertheless, no long-range magnetic order is detected down to 2 K. These results are confirmed by an analysis of the [MII(C(2)O(4))(3)](4-) (M = Ni, Pd, Pt) complex and of a [Pd(II){mu-(C(2)O(4))Mn(II)(OH(2))(4)}(3)](2+) tetranuclear model using density functional theory.  相似文献   

9.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

10.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

11.
The structure and bonding in [M(6)O(19)](n-) isopolyanions of Nb, Ta, Mo, and W have been investigated using density-functional methods. The computational-experimental agreement is good for the geometrical parameters of Mo and W species but less satisfactory for Nb and Ta clusters. The electronic structure of the anions has been probed with molecular-orbital, Mulliken-Mayer, and bonding-energy approaches. The results have indicated that M-O interactions are largely M d-O p in character and that sigma and pi bonds link the metal centers to terminal and bridging (O(b)) oxygen atoms. Some M-O(b) bonds exhibit a [M(4)O(4)] closed-loop structure, but this orbital-interaction mode has not been found to make a particularly outstanding contribution to the bonding stability of the molecules. Mayer indexes correspond to (fractional) multiple, approximately single, and low-order character for terminal, bridging, and internal bonds, respectively, and the valency analysis has yielded similar bonding capacities for the different oxygen atoms. A distribution of the negative charge over all types of oxygen sites and metal charges considerably smaller than the formal oxidation states have been obtained from the Mulliken analysis. Minimal structural changes have been detected on reduction of molybdates and tungstates, in accord with the general properties of the orbitals occupied by the added electrons.  相似文献   

12.
Four salts have been isolated combining the triarylmethane dye cations pararosaniline (PR(+)) and crystal violet (CV(+)) with the hexametalates [M(6)O(19)](2-) (M = Mo, W). A new hexatungstic acid H(2)[W(6)O(19)]·4dma (dma = dimethylacetamide) was isolated and is a useful synthon for hexatungstate salts. Single-crystal X-ray diffraction confirmed the presence of PR(+) and [Mo(6)O(19)](2-) ions in [PR](2)[Mo(6)O(19)]·6dmf (dmf = dimethylformamide). A number of charge-assisted hydrogen bonds N-H···O exist between the cation -NH(2) functions and the anion oxygen atoms. Comparative cyclic voltammetry of salts [A]Cl (A = PR, CV), [Bu(4)N](2)[M(6)O(19)](2-) and A(2)[M(6)O(19)] was established in MeCN and Me(2)SO solutions and of solids in contact with the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [emim][tfsa]. In the molecular solvents, the reversible potential for the process [Mo(6)O(19)](2-/3-) is less negative than the first reduction processes of the dye cations. In contrast, that for [W(6)O(19)](2-/3-) is more negative. Spectro-electrochemistry and bulk electrolysis experiments reveal significantly different pathways in the two cases. In contrast, in the [emim][tfsa] medium, a positive shift in reduction potential of at least 400 mV is seen for the anion processes but relatively little change for the dye cation processes. This means that initial reduction of the anions always precedes that of the dyes, providing significant simplification of the complex voltammetric data. Chemically modified electrodes can be used in the ionic liquid because of slow dissolution kinetics. However, reduced anion salts dissolve rapidly, allowing dissolved phase electrochemistry to be examined. The electrochemistries of the oxidized salts A(2)[M(6)O(19)] are essentially those of the individual ions, although low level interaction of A(+) with reduced anions [M(6)O(19)](3-,4-) is evident. The work establishes protocols for synthesis and handling of intensely absorbing and relatively insoluble salts which can now be applied to systems containing more complex polyoxometalate anions.  相似文献   

13.
The interaction of two luminescent metallopolymers; [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP)co-poly(7)](+), where bpy is 2,2'-bipyridyl, PVP is polyvinylpyridine, and (CAIP)co-poly(7) is poly(styrene(6)-co-p-(aminomethyl)styrene) amide linked to 2-(4-carboxyphenyl)imidazo[4,5-f] [1,10]phenanthroline, with the Dawson polyoxomolybdate α-[Mo(18)O(54)(SO(4))(2)](4-) is described. Both metallopolymers undergo electrostatic association with the polyoxometalate. From both electronic and luminescence spectroscopy the thermodynamic products were determined to be {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) and {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+), i.e. in both instances, the number of ruthenium centres in the cluster exceeds the number required for charge neutralization of the molybdate centre. Association quenches the luminescence of the metallopolymer although, consistent with the excess of Ru(ii) present in the associated composites, emission is not completely extinguished even when a large excess of [Mo(18)O(54)(SO(4))(2)](4-) is present. The observed emission lifetime was not affected by [Mo(18)O(54)(SO(4))(2)](4-) therefore quenching was deemed static. The luminescent intensity data was found to fit best to a (sphere of action) Perrin model from which the radii of the quenching were calculated as 4.6 ? and 5.8 ? for [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP co-poly)(7)](+) respectively. Both UV/Vis and resonance Raman data indicate the presence of a new optical transition centered around 490 nm for the composite, {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). This indicates strong electronic interaction between the metal centres in the former composite, which despite good thermodynamic analogy, is not observed for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). These results are consistent with photoelectrochemical studies of layer by layer assemblies of these films which indicate that the ruthenium centre sensitizes polyoxometalate photo-oxidation of benzyl alcohol in {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not in {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+).  相似文献   

14.
Li J  Tao J  Huang RB  Zheng LS 《Inorganic chemistry》2012,51(11):5988-5990
Two 3D coordination polymers, [Co(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(18)(H(2)O)(6)]·(DMSO)(6)(EtOH)(6)(H(2)O)(36) (1·guests, ip = isophthalate) and [Ni(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(12)(H(2)O)(12)]·(DMSO)(6)(EtOH)(6)(H(2)O)(20) (2·guests), constructed with nanosized tetraicosanuclear Co(II) and Ni(II) wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions.  相似文献   

15.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

16.
Calculations employing density functional theory (Gaussian 98, B3LYP, LANL2DZ, 6-31G) have been undertaken to interrogate the factors influencing the metathesis reaction involving M-M, C-C, and M-C triple bonds for the model compounds M(2)(EH)(6), M(2)(EH)(6)(mu-C(2)H(2)), and [(HE)(3)M(tbd1;CH)](2), where M = Mo, W and E = O, S. Whereas in all cases the ethyne adducts are predicted to be enthalpically favored in the reactions between M(2)(EH)(6) compounds and ethyne, only when M = W and E = O is the alkylidyne product [(HO)(3)W(tbd1;CH)](2) predicted to be more stable than the alkyne adduct. For the reaction M(2)(EH)(6)(mu-C(2)H(2)) --> [(HE)(3)M(tbd1;CH)](2), the deltaG degrees values (kcal mol(-)(1)) are -6 (M = W, E = O), +5 (M = Mo, E = O), +18 (M = W, E = S), and +21 (M = Mo, E = S) and the free energies of activation are calculated to be deltaG() = +19 kcal mol(-)(1) (M = W, E = O) and +34 kcal mol(-)(1) (M = Mo, E = O), where the transition state involves an asymmetric bridged structure M(2)(OH)(4)(mu-OH)(2)(CH)(mu-CH) in which the C-C bond has broken; C.C = 1.89 and 1.98 A for W and Mo, respectively. These results are discussed in terms of the experimental observations of the reactions involving ethyne and the symmetrically substituted alkynes (RCCR, where R = Me, Et) with M(2)(O(t)()Bu)(6) and M(2)(O(t)()Bu)(2)(S(t)()Bu)(4) compounds, where M = Mo, W.  相似文献   

17.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

18.
The tetra-n-butylammonium (TBA) salts of [((i)PrO)TiMo(5)O(18)](3-) 1 and [((i)BuO)TiMo(5)O(18)](3-) 2 were prepared by hydrolysis of mixtures of (TBA)(2)[Mo(2)O(7)], (TBA)(4)α-[Mo(8)O(26)] and Ti(OR)(4) (R = (i)Pr or (i)Bu) in acetonitrile. Treatment of (TBA)(3)1 with alcohols ROH afforded primary and tertiary alkoxide derivatives [(RO)TiMo(5)O(18)](3-) (R = Me 3, (t)Bu 4), whilst aryloxides [(ArO)TiMo(5)O(18)](3-) were prepared by reacting 1 with phenols ArOH (Ar = C(6)H(4)Me-4 5, and C(6)H(4)CHO-2 6). Oxo-bridged [(μ-O)(TiMo(5)O(18))(2)](6-)7 rather than the hydroxo derivative [(HO)TiMo(5)O(18)](3-) was obtained upon hydrolysis of 1. X-Ray crystal structures of TBA salts of anions 3-7 show that titanium is six-coordinate in all cases, although titanium sites are disordered over two trans positions in 3. Mo-O bond length alternation is observed in the Mo(4)O(4) planes of 4 and 7 and in one of the two independent anions in the structure of 3. In solution, (17)O NMR spectra are consistent with the higher anionic charge compared to [Mo(6)O(19)](2-) and reveal an order of basicity for the anions [LM'Mo(5)O(18)](3-) associated with the ability of {LM'}(3+) to donate/withdraw electron density from {Mo(5)O(18)}(6-). Protonolysis reactions of 1 and 3 were slower than for tungstate analogues and the possibility of initial protonation at TiOM (M = Mo) rather than TiOR (M = W) in a proton-assisted S(N)1 mechanism for ligand exchange in [(RO)TiM(5)O(18)](3-) is discussed.  相似文献   

19.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

20.
Synthesis (hydrothermal and metathesis), characterization (UV-vis, IR, TG/DTA), single-crystal X-ray structures, and magnetic properties of three cobalt(II)-pyromellitate complexes, purple [Co(2)(pm)](n) (1), red [Co(2)(pm)(H(2)O)(4)](n) x 2nH(2)O (2), and pink [Co(H(2)O)(6)](H(2)pm) (3) (H(4)pm = pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid)), are described. 1 consists of one-dimensional chains of edge-sharing CoO(6) octahedra that are connected into layers via O-C-O bridges. The layers are held together by the pyromellitate (pm(4-)) backbone to give a three-dimensional structure, each ligand participating in an unprecedented 12 coordination bonds (Co-O) to 10 cobalt atoms. 2 consists of a three-dimensional coordination network possessing cavities in which unbound water molecules reside. This highly symmetric network comprises eight coordinate bonds (Co-O) between oxygen atoms of pm(4-) to six trans-Co(H(2)O)(2). 3 possesses a hydrogen-bonded sandwich structure associating layers of [Co(H(2)O)(6)](2+) and planar H(2)pm(2-). The IR spectra, reflecting the different coordination modes and charges of the pyromellitate, are presented and discussed. The magnetic properties of 1 indicate complex behavior with three ground states (collinear and canted antiferromagnetism and field-induced ferromagnetism). Above the Néel temperature (T(N)) of 16 K it displays paramagnetism with short-range ferromagnetic interactions (Theta = +16.4 K, mu(eff) = 4.90 mu(B) per Co). Below T(N) a weak spontaneous magnetization is observed at 12.8 K in low applied fields (H < 100 Oe). At higher fields (H > 1000 Oe) metamagnetic behavior is observed. Two types of hysteresis loops are observed; one centered about zero field and the second about the metamagnetic critical field. The critical field and the hysteresis width increase as the temperature is lowered. The heat capacity data suggest that 1 has a 2D or 3D magnetic lattice, and the derived magnetic entropy data confirm an anisotropic s(eff) = 1/2 for the cobalt(II) ion. Magnetic susceptibility data indicate that 2 and 3 are paramagnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号