首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a highly sensitive, rapid method for the determination of platinum originating from the anticancer agents cisplatin, carboplatin, and oxaliplatin in human plasma ultrafiltrate. The method is based on the quantification of platinum by inductively coupled plasma mass spectrometry and allows quantification of 7.50 ng l-1 platinum in only 150 microl of matrix. Sample pretreatment involves dilution of samples with 1% HNO3. Validation fulfilled the most recent FDA guidelines for bioanalytical method validation. Validated ranges of quantification were 7.50 ng l-1 to 1.00x10(5) ng l-1 in plasma ultrafiltrate for all three platinum compounds. The assay is now successfully used to support pharmacokinetic studies in cancer patients treated with cisplatin, carboplatin, or oxaliplatin.  相似文献   

2.
NAMI-A is a novel ruthenium-containing experimental anticancer agent. We have developed and validated a rapid and sensitive analytical method to determine NAMI-A in human plasma, plasma ultrafiltrate and urine using atomic absorption spectrometry with Zeeman correction. The sample pretreatment procedure is straightforward, involving only dilution with an appropriate hydrochloric acid buffer-solution. Because the response signal of the spectrometer depended on the composition of the sample matrix, in particular on the amount of human plasma in the sample, all unknown samples were diluted to match the matrix composition in which the standard line was prepared (plasma-buffer 1:10 v/v). This procedure enabled the measurement of samples of different biological matrices in a single run. The validated range of determination was 1.1-220 microM NAMI-A for plasma and urine, and 0.22-44 microM for plasma ultrafiltrate. The lower limit of detection was 0.85 microM in plasma and urine and 0.17 microM in plasma ultrafiltrate. The lower limit of quantitation was 1.1 and 0.22 microM, respectively. The performance of the method, in terms of precision and accuracy was according to the generally accepted criteria for validation of analytical methodologies. The applicability of the method was demonstrated in a patient who was treated in a pharmacokinetic phase I trial with intravenous NAMI-A.  相似文献   

3.
NAMI-A is a novel ruthenium-containing experimental anticancer agent. We have developed and validated a rapid and sensitive analytical method to determine NAMI-A in human plasma, plasma ultrafiltrate and urine using atomic absorption spectrometry with Zeeman correction. The sample pretreatment procedure is straightforward, involving only dilution with an appropriate hydrochloric acid buffer-solution. Because the response signal of the spectrometer depended on the composition of the sample matrix, in particular on the amount of human plasma in the sample, all unknown samples were diluted to match the matrix composition in which the standard line was prepared (plasma-buffer 1 : 10 v/v). This procedure enabled the measurement of samples of different biological matrices in a single run. The validated range of determination was 1.1–220 μM NAMI-A for plasma and urine, and 0.22–44 μM for plasma ultrafiltrate. The lower limit of detection was 0.85 μM in plasma and urine and 0.17 μM in plasma ultrafiltrate. The lower limit of quantitation was 1.1 and 0.22 μM, respectively. The performance of the method, in terms of precision and accuracy, was according to the generally accepted criteria for validation of analytical methodologies. The applicability of the method was demonstrated in a patient who was treated in a pharmacokinetic phase I trial with intravenous NAMI-A. Received: 1 September 2000 / Revised: 1 November 2000 / Accepted: 12 November 2000  相似文献   

4.
Clenbuterol (CBL) is a potent beta(2)-adrenoceptor agonist used for the management of respiratory disorders in the horse. The detection and quantification of CBL can pose a problem due to its potency, the relatively low dose administered to the horse, its slow clearance and low plasma concentrations. Thus, a sensitive method for the quantification and confirmation of CBL in racehorses is required to study its distribution and elimination. A sensitive and fast method was developed for quantification and confirmation of the presence of CBL in equine plasma, urine and tissue samples. The method involved liquid-liquid extraction (LLE), separation by liquid chromatography (LC) on a short cyano column, and pseudo multiple reaction monitoring (pseudo-MRM) by electrospray ionization quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS). At very low concentrations (picograms of CBL/mL), LLE produced better extraction efficiency and calibration curves than solid-phase extraction (SPE). The operating parameters for electrospray QTOF and yield of the product ion in MRM were optimized to enhance sensitivity for the detection and quantification of CBL. The quantification range of the method was 0.013-10 ng of CBL/mL plasma, 0.05-20 ng/0.1 mL of urine, and 0.025-10 ng/g tissue. The detection limit of the method was 13 pg/mL of plasma, 50 pg/0.1 mL of urine, and 25 pg/g of tissue. The method was successfully applied to the analysis of CBL in plasma, urine and various tissue samples, and in pharmacokinetic (PK) studies of CBL in the horse. CBL was quantified for 96 h in plasma and 288 h in urine post-administration of CLB (1.6 micro g/kg, 2 x daily x 7 days). This method is useful for the detection and quantification of very low concentrations of CBL in urine, plasma and tissue samples.  相似文献   

5.
A sensitive method using enantiospecific liquid chromatography/tandem mass spectrometry detection for the quantitation of S- and R-mephenytoin as well as its metabolites S- and R-nirvanol and S- and R-4'-hydroxymephenytoin in plasma and urine has been developed and validated. Plasma samples were prepared by protein precipitation with acetonitrile, while urine samples were diluted twice with the mobile phase before injection. The analytes were then separated on a chiral alpha(1)-acid glycoprotein (AGP) column and thereafter detected, using electrospray ionization tandem mass spectrometry. In plasma, the lower limit of quantification (LLOQ) was 1 ng/mL for S- and R-4'-hydroxymephenytoin and S-nirvanol and 3 ng/mL for R-nirvanol and S- and R-mephenytoin. In urine, the LLOQ was 3 ng/mL for all compounds. Resulting plasma and urine intra-day precision values (CV) were <12.4% and <6.4%, respectively, while plasma and urine accuracy values were 87.2-108.3% and 98.9-104.8% of the nominal values, respectively. The method was validated for plasma in the concentration ranges 1-500 ng/mL for S- and R-4'-hydroxymephenytoin, 1-1000 ng/mL for S-nirvanol, and 3-1500 ng/mL for R-nirvanol and S- and R-mephenytoin. The validated concentration range in urine was 3-5000 ng/mL for all compounds. By using this method, the metabolic activities of two human drug-metabolizing enzymes, cytochrome P450 (CYP) 2C19 and CYP2B6, were simultaneously characterized.  相似文献   

6.
A rapid, sensitive, and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method for the determination of udenafil and its active metabolite, DA-8164, in human plasma and urine using sildenafil as an internal standard (IS) was developed and validated. Udenafil, DA-8164 and IS from a 100 microL aliquot of biological samples were extracted by protein precipitation using acetonitrile. Chromatographic separation was carried on an Acquity UPLC BEH C(18) column (50 x 2.1 mm, i.d., 1.7 microm) with an isocratic mobile phase consisting of acetonitrile and containing 0.1% formic acid (75:25, v/v) at flow rate of 0.4 mL/min, and total run time was within 1 min. Detection and quantification was performed by the mass spectrometer using multiple reaction-monitoring mode at m/z 517 --> 283 for udenafil, m/z 406 --> 364 for DA-8164 and m/z 475 --> 100 for IS. The assay was linear over a concentration range of 1-600 ng/mL with a lower limit of quantification of 1 ng/mL in both human plasma and urine. The coefficient of variation of this assay precision was less than 13.7%, and the accuracy exceeded 92.0%. This method was successfully applied for pharmacokinetic study after oral administration of udenafil 100 mg to healthy Korean male volunteers.  相似文献   

7.
A sensitive, specific and efficient high‐performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the simultaneous determination of total vincristine and actinomycin‐D concentrations in human plasma and an assay for the determination of unbound vincristine are presented. Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and heated electrospray ionization (H‐ESI) were tested as ionization interfaces. For reasons of robustness ESI was chosen followed by tandem mass spectrometry (ESI‐MS/MS). For the plasma assay a 30 µL aliquot was protein precipitated with acetonitrile/methanol (50:50, v/v) containing the internal standard vinorelbine and 10 µL volumes were injected onto the HPLC system. To determine unbound vincristine, ultrafiltrate was produced from plasma using 30 kDa centrifugal filter units. The plasma ultrafiltrate was mixed with methanol (50:50, v/v), internal standard vinorelbine was added and 20 µL aliquots were injected onto the HPLC system. Separation was achieved on a 50 × 2.1 mm i.d. Xbridge C18 column using 1 mM ammonium acetate/acetonitrile (30:70, v/v) adjusted to pH 10.5 with ammonia, run in a gradient with methanol at a flow rate of 0.4 mL/min. HPLC run time was 6 min. The assay quantifies in plasma vincristine from 0.25 to 100 ng/mL and actinomycin‐D from 0.5 to 250 ng/mL using plasma sample volumes of only 30 µL. Vincristine in plasma ultrafiltrate can be quantified from 1 to 100 ng/mL. Validation results demonstrate that vincristine and actinomycin‐D can be accurately and precisely quantified in human plasma and plasma ultrafiltrate with the presented methods. The assays are now in use to support clinical pharmacological studies in children treated with vincristine and actinomycin‐D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A sensitive and specific method for the quantitative determination of paroxetine in human plasma is presented. After solvent extraction from plasma with hexane/ethyl acetate (1 : 1) at alkaline pH and derivatization to the pentafluorobenzyl carbamate derivative, paroxetine was measured by gas chromatography-negative ion chemical ionization mass spectrometry. The carboxylate anion at m/z 372 was obtained at high relative abundance. [2H6]-labeled paroxetine was used as an internal standard and its rapid and facile preparation from the unlabeled compound is described. Calibration graphs were linear within a range of 0.094-12.000 ng x ml(-1) using 1 ml of plasma and 0.469-60 ng x ml(-1) using 200 microl of plasma. Intra-day precision was 1.47% (0.375 ng x ml(-1)), 3.16% (3 ng x ml(-1)) and 1.37% (9 ng x ml(-1)) for the low-level method, and 3.37% (1.875 ng x ml(-1)), 2.72% (15 ng x ml(-1)) and 2.22% (45 ng x ml(-1)) for the high-level method. Inter-day precision was 1.65% (0.375 ng x ml(-1)), 2.13% (3 ng x ml(-1)) and 1.66% (9 ng x ml(-1)) for the low-level method, and 1.10% (1.875 ng x ml(-1)), 1.56% (15 ng x ml(-1)) and 1.90% (45 ng x ml(-1)) for the high-level method. At the limit of quantification (0.094 ng x ml(-1)), intra-day precision was 4.30% (low-level method) and 2.56% (high-level method), and inter-day precision was 3.23% (low-level method) and 3.00% (high-level method). The method is rugged, rapid and robust and has been applied to the batch analysis of paroxetine during pharmacokinetic profiling of the drug.  相似文献   

9.
An accurate and selective method for the simultaneous determination of triptolide, tripdiolide and tripterine in human urine using hydrocortisone as an internal standard (IS) by high-performance liquid chromatography coupled with atmospheric-pressure chemical ionization mass spectrometry in negative ion mode has been developed. After triptolide, tripdiolide and tripterine in human urine were extracted with ethyl acetate and cleaned by solid-phase extraction with C(18) cartridges, a satisfactory separation was achieved on an XDB C(18) short column (30 x 2.1 mm i.d., 3 microm) using the mobile phase of acetic acid-ammonium acetate (5 mmol/L, pH = 4.5)-acetonitrile-methanol in gradient elution. Detection was operated by APCI in selected ion monitoring mode. The target ions m/z 359, m/z 375, m/z 449 and m/z 419 were selected for the quantification of triptolide, tripdiolide, tripterine and IS, respectively. The linear range was 1.0-100.0 ng mL(-1), and the limits of quantification in human urine were found to be 0.1-0.5 ng mL(-1) for the three compounds. The precisions (CV%) and accuracies were 6.6-12.9 and 85.1-97.0%, respectively. The developed method could be applied to the determination of triptolide, tripdiolide and tripterine in human urine for diagnosis of the intoxication and for forensic purposes.  相似文献   

10.
A method was developed and validated for the analysis of R(-)-apomorphine, (R-)-apocodeine and R(-)-norapomorphine in human plasma and urine with N-propylnorapomorphine as internal standard using gas chromatography/mass spectrometry (GC/MS) and single-ion monitoring after a single liquid-liquid extraction and silylation of compounds. The quantification limits were 1 ng/ml for apomorphine and apocodeine and 25 ng/ml for norapomorphine. Calibration curves were linear, within the range 1-100 ng/ml. Variation in intraday and interday precision was below 10%. This method was applied to study apomorphine bioavailability in nine patients with Parkinson's disease before and after coadministration of a catechol-O-methyl transferase inhibitor.  相似文献   

11.
A sensitive high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of rimonabant in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective (M+H)+ ions, m/z 463-363 for rimonabant and m/z 408-235 for the internal standard. The assay exhibited a linear dynamic range of 0.1-100 ng/mL for rimonabant in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. With dilution integrity up to 10-fold, the upper limit of quantification was extendable up to 1000 ng/mL. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

12.
A liquid chromatographic method using a solid-phase extraction procedure for the quantification of sotalol in plasma and urine is described. Sotalol is eluted from an extraction column with ethyl acetate-acetonitrile (1:2) and, after separation by reversed-phase high-performance liquid chromatography on a mu Bondapak C18 column, is quantified by fluorescence detection at excitation and emission wavelengths of 240 and 310 nm, respectively. The method has been demonstrated to be linear over the concentration ranges 10-6000 ng/ml in plasma and 0.5-100 micrograms/ml in urine. Mean inter-assay accuracy of the method for plasma ranged from 93 to 100% and for urine from 102 to 114%; precision ranged from 0.5 to 1.6% for plasma over a concentration range of 200-4000 ng/ml and for urine from 0.7 to 2.0% at concentrations of 2-50 micrograms/ml. Mass spectrometry confirmed the presence of sotalol in isolated chromatographic fractions of plasma and urine extracts from subjects given sotalol orally.  相似文献   

13.
A simple, sensitive and rapid high-performance liquid chromatography/negative electrospray ionization tandem mass spectrometry method was developed and validated for the assay of aranidipine (AR) and its active metabolite (AR-M) in human plasma. Following a liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M-H]- ions, m/z 387.0 --> 164.0 for AR, m/z 389.1 --> 208.1 for AR-M and m/z 359.0 --> 121.8 for the internal standard. The assay exhibited a linear dynamic range of 0.02-10 ng x mL(-1) for AR and 0.2-100 ng x mL(-1) for AR-M in human plasma. The limits of quantitation were 0.02 ng x mL(-1) for AR and 0.2 ng x mL(-1) for AR-M. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.8 min for each sample exhibited its high-throughout analysis ability. The validated method can be applied to analyze human plasma samples for pharmacokinetic studies.  相似文献   

14.
A sensitive analytical method based on flameless atomic absorption spectrometry with Zeeman correction has been validated for the quantitative determination in human plasma of platinum originating from cisplatin in a liposomal source, SPI-77. The performance of the method was acceptable over a sample concentration range of 0. 125-1.25 micromol platinum/L and the lower limit of quantification was determined to be 1.25 micromol platinum/L in undiluted clinical samples. The performance data of the assay were investigated using both a calibration curve with carboplatin in plasma ultrafiltrate and diluted human plasma samples spiked with SPI-77. The recoveries, between-day and the within-day precisions of both methods of calibration were not significantly different allowing carboplatin ultrafiltrate calibration standards to be used to quantify platinum derived from SPI-77 in human plasma. Apparently, the liposomal formulation had no significant influence on the determination of platinum. The usefulness of the presented method was demonstrated in a phase I clinical and pharmacokinetic study. In addition, in vitro experiments were carried out to determine the distribution of SPI-77 in blood. The results indicated that platinum from SPI-77 mainly concentrates in plasma and that binding to and/or endocytosis in red blood cells is negligible.  相似文献   

15.
林强  杨超  李美丽  王佳  侯瀚然  邵兵  牛宇敏 《色谱》2023,41(3):274-280
人体生物基质中麻痹性贝类毒素的检测对其引起的食物中毒诊断和救治具有重要意义。研究建立了超高效液相色谱-串联质谱法测定血浆、尿液中14种麻痹性贝类毒素的分析方法。实验比较了不同固相萃取柱的影响,优化了前处理条件和色谱条件,血浆样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取后直接上机测定,尿液样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取,聚酰胺(PA)固相萃取柱净化后上机测定。采用Poroshell 120 HILIC-Z色谱柱(100 mm×2.1 mm,2.7μm)对14种贝类毒素进行分离,流动相为含0.1%(v/v)甲酸的5 mmoL/L甲酸铵缓冲溶液和0.1%(v/v)甲酸乙腈溶液,流速为0.50 mL/min。在电喷雾模式(ESI)下进行正负离子扫描,采用多反应监测(MRM)模式检测,外标法定量。结果表明,对于血浆和尿液样品,14种贝类毒素分别在0.24~84.06 ng/mL范围内线性关系良好,相关系数均大于0.995。尿液检测的定量限为4.80~34.40 ng/mL,血浆检测的定量限为1.68~12.04 ng/mL。尿液和血浆样品在1、2和10倍定量限加标水平下平均回收率为70.4%~123.4%,日内精密度为2.3%~19.1%,日间精密度为4.0%~16.2%。应用建立的方法对腹腔注射14种贝类毒素小鼠血浆和尿液进行测定,20份血浆样本中检出含量分别为19.40~55.60μg/L和8.75~13.86μg/L。该方法操作简便,样品取样量少,方法灵敏度高,适用于血浆和尿液中麻痹性贝类毒素的快速检测。  相似文献   

16.
A novel pre-column derivatization reversed-phase high-performance liquid chromatography with fluorescence detection is described for the determination of bupropion in pharmaceutical preparation, human plasma and human urine using mexiletine as internal standard. The proposed method is based on the reaction of 4-chloro-7-nitrobenzofurazan (NBD-Cl) with bupropion to produce a fluorescent derivative. The derivative formed is monitored on a C18 (150 mm × 4.6 mm i.d., 5 μm) column using a mobile phase consisting of methanol-water 75:25 (v/v), at a flow-rate of 1.2 mL/min and detected fluorimetrically at λ(ex) = 458 and λ(em) = 533 nm. The assay was linear over the concentration ranges of 5-500 and 10-500 ng/mL for plasma and urine, respectively. The limits of detection and quantification were calculated to be 0.24 and 0.72 ng/mL for plasma and urine, respectively (inter-day results). The recoveries obtained for plasma and urine were 97.12% ± 0.45 and 96.00% ± 0.45, respectively. The method presents good performance in terms of precision, accuracy, specificity, linearity, detection and quantification limits and robustness. The proposed method is applied to determine bupropion in commercially available tablets. The results were compared with an ultraviolet spectrophotometry method using t- and F-tests.  相似文献   

17.
The new-generation nebulizers are commonly used for the administration of salbutamol in mechanically ventilated patients. The different modes of administration and new devices have not been compared. We developed a liquid chromatography-tandem mass spectrometry method for the determination of concentrations as low as 0.05 ng/mL of salbutamol, corresponding to the desired plasma concentration after inhalation. Salbutamol quantification was performed by reverse-phase HPLC. Analyte quantification was performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection ESI in the positive mode. The method was validated over concentrations ranging from 0.05 to 100 ng/mL in plasma and from 0.18 to 135 ng/mL in urine. The method is precise, with mean inter-day coefficient of variation (CV%) within 3.1-8.3% in plasma and 1.3-3.9% in urine, as well as accurate. The proposed method was found to reach the required sensitivity for the evaluation of different nebulizers as well as nebulization modes. The present assay was applied to examine whether salbutamol urine levels, normalized with the creatinine levels, correlated with the plasma concentrations. A suitable, convenient and noninvasive method of monitoring patients receiving salbutamol by mechanical ventilation could be implemented.  相似文献   

18.
A method was developed for the determination of rare earth elements (REEs) in urine with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICPMS). The undiluted sample was directly injected into the graphite tube and trifluoromethane (Freon-23) was used as chemical modifier in order to reduce the vaporization temperature and the memory effect of most of the lanthanides. The detection limits were in the range 1-10 ng/L with relative standard deviation of 3-5% at concentration levels of 1microg/L, and less than 10-15% at 100 ng/L. Two different procedures, external calibration and a standard additions method, were evaluated to measure the concentration levels of lanthanides in the urine samples and the second procedure was considered to be the best choice for calibration in this work. The level of REEs in urine of 50 healthy volunteers was in the range 5-20 ng/L, above the detection limit of ETV-ICPMS.  相似文献   

19.
The aim of this study was to develop and validate fully the liquid chromatography–tandem mass spectrometry method for free mycophenolic acid (MPA) concentration measurements in plasma ultrafiltrate that will be reliable and simple in preparation with deuterated MPA (MPA‐d3) chosen as an internal standard. The chromatographic separation was made with Zorbax Eclipse XDB‐C18 column (4.6 × 150 mm) using a gradient of two solutions as a mobile phase: (A) water and (B) methanol, each containing 0.1% formic acid and 2.5 mm ammonium acetate. Satisfactory repeatability of retention times was achieved with average values of 7.54 ± 0.20 min and 7.50 ± 0.19 min for MPA and MPA‐d3, respectively. The method was selective, with no carry‐over or matrix effect observed. The analytical range was proven for MPA ultrafiltrate concentrations of 1–500 ng/mL. The accuracy and precision fell within the acceptance criteria for intraday (accuracy: 100.63–110.46%, imprecision: 6.23–7.76%), as well as interday assay (accuracy: 98.81–110.63%; imprecision: 5.36–10.22%). The method was used for free MPA determination in plasma samples from patients treated with mycophenolate mofetil. To the best of our knowledge this is the first liquid chromatography–tandem mass spectrometry method for free MPA monitoring using MPA‐d3 that allows to measure plasma ultrafiltrate concentrations as low as 1 ng/mL.  相似文献   

20.
A method for sensitive determination of the anti-cancer agent oxaliplatin in human plasma and human plasma ultrafiltrate (pUF) is presented. The method is based on the quantification of platinum by graphite-furnace atomic-absorption spectrometry, with Zeeman correction and an atomisation temperature of 2,700°C. Sample pretreatment involves dilution of the samples with a solution containing 0.15 mol L–1 NaCl and 0.20 mol L–1 HCl in water. Validation was performed in accordance with the most recent FDA guidelines for bioanalytical method validation. All results were within requirements. The validated ranges of quantification were 0.10–400 mol L–1 for human pUF and 0.50–400 mol L–1 for plasma. The assay is now successfully used to support pharmacokinetic studies of cancer patients treated with oxaliplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号