首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wigner's classical theorem on symmetry transformations plays a fundamental role in quantum mechanics. It can be formulated, for example, in the following way: Every bijective transformation on the set ℒ of all 1-dimensional subspaces of a Hilbert space H which preserves the angle between the elements of ℒ is induced by either a unitary or an antiunitary operator on H. The aim of this paper is to extend Wigner's result from the 1-dimensional case to the case of n-dimensional subspaces of H with n∈ℕ fixed. Received: 28 August 2000 / Accepted: 30 October 2000  相似文献   

2.
We adopt an operational approach to quantum mechanics in which a physical system is defined by the mathematical structure of its set of states and properties. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter which corresponds with the number N of possible outcomes in an experiment. In the case N=2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N→∞ the system is classical, i.e. the experiments are deterministic and its set of properties is a Boolean lattice. For intermediate situations the change of state due to measurement is neither ‘maximal’ (i.e. quantum) nor ‘zero’ (i.e. classical). We show that two of the axioms used in Piron’s representation theorem for quantum mechanics are violated, namely the covering law and weak modularity. Next, we discuss a modified version of the model for which it is even impossible to define an orthocomplementation on the set of properties. Another interesting feature for the intermediate situations of this model is that the probability of a state transition in general not only depends on the two states involved, but also on the measurement context which induces the state transition.  相似文献   

3.
《Annals of Physics》1989,194(2):281-302
In classical mechanics, there is no duality theorem relating the BRST cohomologies at positive and negative ghost numbers since these generically fail to be isomorphic. It is shown in this paper, however, that a duality theorem for the BRST operator cohomology can be established in quantum mechanics. Furthermore, when the hermicity properties of the quantum BRST formalism—which are in general just formal—turn out to be actually well defined, this duality theorem also holds for the state cohomology, as a consequence of the non degenerate pairing between subspaces at positive and negative ghost numbers defined by the BRST scalar product. In the case of gauge systems quantized in the Schrödinger representation with compact gauge orbits, the duality theorem contains ordinary Poincaré duality for a compact manifold. In the Fock representation, the duality theorem sheds a new light on existing decoupling theorems. The comparison with the classical situation is also briefly discussed.  相似文献   

4.
In the foundations of quantum mechanics Gleason’s theorem dictates the uniqueness of the state transition probability via the inner product of the corresponding state vectors in Hilbert space, independent of which measurement context induces this transition. We argue that the state transition probability should not be regarded as a secondary concept which can be derived from the structure on the set of states and properties, but instead should be regarded as a primitive concept for which measurement context is crucial. Accordingly, we adopt an operational approach to quantum mechanics in which a physical entity is defined by the structure of its set of states, set of properties and the possible (measurement) contexts which can be applied to this entity. We put forward some elementary definitions to derive an operational theory from this State–COntext–Property (SCOP) formalism. We show that if the SCOP satisfies a Gleason-like condition, namely that the state transition probability is independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented, which is one of the ‘quantum axioms’ used in the Piron–Solèr representation theorem for quantum systems. In this sense we obtain a possible physical meaning for the orthocomplementation widely used in quantum structures.  相似文献   

5.
6.
Discrete stationary classical processes as well as quantum lattice states are asymptotically confined to their respective typical support, the exponential growth rate of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability of typical supports can be asymptotically specified by means of the relative entropy, according to Sanov’s theorem. We give an extension to the correlated case, referring to the newly introduced class of HP-states.  相似文献   

7.
This paper discusses a possible resolution of the nonobjectivity-nonlocality dilemma in quantum mechanics in the light of experimental tests of the Bell inequality for two entangled photons and a Bell-like inequality for a single neutron. My conclusion is that these experiments show that quantum mechanics is nonobjective: that is, the values of physical observables cannot be assigned to a system before measurement. Bell’s assumption of nonlocality has to be rejected as having no direct experimental confirmation, at least thus far. I also consider the relationships between nonobjectivity and contextuality. Specifically, I analyze the impact of the Kochen-Specker theorem on the problem of contextuality of quantum observables. I argue that, just as von Neumann’s “no-go” theorem, the Kochen-Specker theorem is based on assumptions that do not correspond to the real physical situation. Finally, I present a theory of measurement based on a classical, purely wave model (pre-quantum classical statistical field theory), a model that reproduces quantum probabilities. In this model continuous fields are transformed into discrete clicks of detectors. While this model is classical, it is nonobjective. In this case, nonobjectivity is the result of the dependence of experimental outcomes on the context of measurement, in accordance with Bohr’s view.  相似文献   

8.
We consider the problem of constraining a particle to a smooth compact submanifold Σ of configuration space using a sequence of increasing potentials. We compare the classical and quantum versions of this procedure. This leads to new results in both cases: an unbounded energy theorem in the classical case, and a quantum averaging theorem. Our two step approach, consisting of an expansion in a dilation parameter, followed by averaging in normal directions, emphasizes the role of the normal bundle of Σ, and shows when the limiting phase space will be larger (or different) than expected. Received: 16 November 2000 / Accepted: 2 February 2001  相似文献   

9.
We study quantum analogs of classical situations, i.e. quantum states possessing some specific classical attribute(s). These states seem quite generally, to have the form of gaussian density matrices. Such states can always be parametrized as thermal squeezed states (TSS). We consider the following specific cases: (a) Two beams that are built from initial beams which passed through a beam splitter cannot, classically, be distinguished from (appropriately prepared) two independent beams that did not go through a splitter. The only quantum states possessing this classical attribute are TSS. (b) The classical Cramer's theorem was shown to have a quantum version (Hegerfeldt). Again, the states here are Gaussian density matrices. (c) The special case in the study of the quantum version of Cramer's theorem, viz. when the state obtained after partial tracing is a pure state, leads to the conclusion that all states involved are zero temperature limit TSS. The classical analog here are gaussians of zero width, i.e. all distributions are δ functions in phase space.  相似文献   

10.
We report on an “anti-Gleason” phenomenon in classical mechanics: in contrast with the quantum case, the algebra of classical observables can carry a non-linear quasi-state, a monotone functional which is linear on all subspaces generated by Poisson-commuting functions. We present an example of such a quasi-state in the case when the phase space is the 2-sphere. This example lies in the intersection of two seemingly remote mathematical theories—symplectic topology and the theory of topological quasi-states. We use this quasi-state to estimate the error of the simultaneous measurement of non-commuting Hamiltonians. M. Entov partially supported by E. and J. Bishop Research Fund and by the Israel Science Foundation grant # 881/06. L. Polterovich partially supported by the Israel Science Foundation grant # 11/03.  相似文献   

11.
We establish a noncommutative analogue of the first fundamental theorem of classical invariant theory. For each quantum group associated with a classical Lie algebra, we construct a noncommutative associative algebra whose underlying vector space forms a module for the quantum group and whose algebraic structure is preserved by the quantum group action. The subspace of invariants is shown to form a subalgebra, which is finitely generated. We determine generators of this subalgebra of invariants and determine their commutation relations. In each case considered, the noncommutative modules we construct are flat deformations of their classical commutative analogues. Our results are therefore noncommutative generalisations of the first fundamental theorem of classical invariant theory, which follows from our results by taking the limit as q → 1. Our method similarly leads to a definition of quantum spheres, which is a noncommutative generalisation of the classical case with orthogonal quantum group symmetry.  相似文献   

12.
The Quantum Speed up as Advanced Cognition of?the?Solution   总被引:1,自引:1,他引:0  
Solving a problem requires a problem solving step (deriving, from the formulation of the problem, the solution algorithm) and a computation step (running the algorithm). The latter step is generally oblivious of the former. We unify the two steps into a single physical interaction: a many body interaction in an idealized classical framework, a measurement interaction in the quantum framework. The many body interaction is a useful conceptual reference. The coordinates of the moving parts of a perfect machine are submitted to a relation representing problem-solution interdependence. Moving an “input” part nondeterministically produces a solution through a many body interaction. The kinematics and the statistics of this problem solving mechanism apply to quantum computation—once the physical representation is extended to the oracle that produces the problem. Configuration space is replaced by phase space. The relation between the coordinates of the machine parts now applies to a set of variables representing the populations of the qubits of a quantum register during reduction. The many body interaction is replaced by the measurement interaction, which changes the population variables from the values before to the values after measurement (and the forward evolution into the backward evolution, the same unitary transformation but ending with the state after measurement). Quantum computation is reduction on the solution of the problem under the problem-solution interdependence relation. The speed up is explained by a simple consideration of time-symmetry, it is the gain of information about the solution due to backdating, to before running the algorithm, a time-symmetric part of the reduction on the solution. This advanced cognition of the solution reduces the solution space to be explored by the algorithm. The quantum algorithm takes the time taken by a classical algorithm that knows in advance 50% of the information acquired by reading the solution (i.e. by measuring the content of the computer register at the end of the quantum algorithm). From another standpoint, the notion that a computation process is condensed into a single physical interaction explains the fact that we perceive many things at the same time in the introspective “present” (the instant of the interaction in the classical case, the time interval spanned by backdated reduction in the quantum case).  相似文献   

13.
14.
Based on the concept of classical phase, we formulate a new explanation for the quantum phase from the quantum mechanical point of view. The quantum phase is the canonically conjugate variable of an angular momentum operator, which corresponds to the angular position φ in an actual physical space with a classical reference frame, but it takes a complex exponential form e ≡cosφ+i sinφ in the abstract Hilbert space of a quantum reference frame. This formulation is simply the famous Euler formula in a complex number field. In particular, when φ = π/2, the correlative quantum phase is a unitary pure imaginary number e iπ/2≡cos(π/2)+i sin(π/2) ≡ i. By using a photon state-vector function that is the general solution of photon Schr?dinger equation and can completely describe a photon’s behavior, we discuss the relationship between the angular momentum of a photon and the phase of the photon; we also analyze the intrinsic relationship between the macroscopic light wave phase and the microscopic photon phase.  相似文献   

15.
All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [24] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einstein’s equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain “diophantine condition,” which holds except for a set of measure zero.  相似文献   

16.
Sorkin’s recent proposal for a realist interpretation of quantum theory, the anhomomorphic logic or coevent approach, is based on the idea of a “quantum measure” on the space of histories. This is a generalisation of the classical measure to one which admits pair-wise interference and satisfies a modified version of the Kolmogorov probability sum rule. In standard measure theory the measure on the base set Ω is normalised to one, which encodes the statement that “Ω happens”. Moreover, the Kolmogorov sum rule implies that the measure of any subset A is strictly positive if and only if A cannot be covered by a countable collection of subsets of zero measure. In quantum measure theory on the other hand, simple examples suffice to demonstrate that this is no longer true. We propose an appropriate generalisation, the quantum cover, which in addition to being a cover of A, satisfies the property that if the quantum measure of A is non-zero then this is also the case for at least one of the elements in the cover. Our work implies a non-triviality result for the coevent interpretation for Ω of finite cardinality, and allows us to cast the Peres-Kochen-Specker theorem in terms of quantum covers.  相似文献   

17.
We examine the possible states of subsystems of a system of bits or qubits. In the classical case (bits), this means the possible marginal distributions of a probability distribution on a finite number of binary variables; we give necessary and sufficient conditions for a set of probability distributions on all proper subsets of the variables to be the marginals of a single distribution on the full set. In the quantum case (qubits), we consider mixed states of subsets of a set of qubits; in the case of three qubits we find quantum Bell inequalities—necessary conditions for a set of two-qubit states to be the reduced states of a mixed state of three qubits. We conjecture that these conditions are also sufficient.  相似文献   

18.
Uniformities describing the distinguishability of states and of observables are discussed in the context of general statistical theories and are shown to be related to distinguished subspaces of continuous observables and states, respectively. The usual formalism of quantum mechanics contains no such physical uniformity for states. Using recently developed tools of quantum harmonic analysis, a natural one-to-one correspondence between continuous subspaces of nonrelativistic quantum and classical mechanics is established, thus exhibiting a close interrelation between physical uniformities for quantum states and compactifications of phase space. General properties of the completions of the quantum state space with respect to these uniformities are discussed.  相似文献   

19.
We develop a prequantum classical statistical model in that the role of hidden variables is played by classical (vector) fields. We call this model Prequantum Classical Statistical Field Theory (PCSFT). The correspondence between classical and quantum quantities is asymptotic, so we call our approach asymptotic dequantization. We construct the complex representation of PCSFT. In particular, the conventional Schrödinger equation is obtained as the complex representation of the system of Hamilton equations on the infinite-dimensional phase space. In this note we pay the main attention to interpretation of so called pure quantum states (wave functions) in PCSFT, especially stationary states. We show, see Theorem 2, that pure states of QM can be considered as labels for Gaussian measures concentrated on one dimensional complex subspaces of phase space that are invariant with respect to the Schrödinger dynamics. “A quantum system in a stationary state ψ” in PCSFT is nothing else than a Gaussian ensemble of classical fields (fluctuations of the vacuum field of a very small magnitude) which is not changed in the process of Schrödinger's evolution. We interpret in this way the problem of stability of hydrogen atom. One of unexpected consequences of PCSFT is the infinite dimension of physical space on the prequantum scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号