首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
It is shown that the emergence of anisotropies in the angular distributions of fragments originating from the spontaneous and induced fission of oriented actinide nuclei is possible only if nonuniformities in the population of the projectionsM (K) of the fissile-nucleus spin onto the z axis of the laboratory frame (fissile-nucleus symmetry axis) appear simultaneously in the vicinity of the scission point but not in the vicinity of the outer saddle point of the deformation potential. The possibilities for creating the orientation of fissile nuclei for spontaneous and induced fission and the effect of these orientations on the anisotropies under analysis are considered. The role of Coriolis interaction as a unique source of the mixing of different-K fissile-nucleus states at all stages of the fission process is studied with allowance for the dynamical enhancement of this interaction for excited thermalized states of the nucleus involved that is characterized by a high energy density. It is shown that the absence of thermalization of excited states of the fissile nucleus that appear because of the effect of nonadiabaticity of its collective deformation motion in the vicinity of the scission point is a condition of conservation of the influence that transition fission states formed at the inner and outer fission barriers exerts on the distribution of the spin projections K for lowenergy spontaneous nuclear fission. It is confirmed that anisotropies observed in the angular distributions of fragments originating from the fission of nuclei that is induced by fast light particles (multiply charged ions) are due to the appearance of strongly excited equilibrium(nonequilibrium) states of the fissile nucleus in the vicinity of its scission point that have a Gibbs (non-Gibbs) distribution of projections K.  相似文献   

2.
It is shown that the multiplicities and angular and energy distributions of neutrons and photons evaporated from thermalized fragments originating from the spontaneous and low-energy induced fission of nuclei, the relative yields of ground and isomeric states of final fragments, and the features of delayed neutrons emitted upon the beta decay of the above fragments can successfully be described by employing nonequilibrium distributions of spins and relative orbital angular momenta of fission fragments formed in the vicinity of the scission point for the fissile nucleus being studied. It is also shown that these distributions, which are characterized by large mean values of the spins and orbital angular momenta directed orthogonally to the symmetry axis of the fissioning nucleus are successfully constructed upon simultaneously taking into account zero-mode transverse wriggling and bending vibrations of a fissile compound nucleus in the vicinity of its scission point, the wriggling vibrations being dominant. It is confirmed that the zero-mode wriggling vibrations considered immediately above are directly involved in the formation of the angular distributions of fragments originating from the spontaneous and low-energy fission of nuclei. This makes it possible to describe successfully such distributions for photofission fragments.  相似文献   

3.
The concept of transition fission states, which was successfully used to describe the angular distributions of fragments for the spontaneous and low-energy induced fission of axisymmetric nuclei, proves to be correct if the spin projection onto the symmetry axis of a fissile nucleus is an integral of the motion for the external region from the descent of the fissile nucleus from the external fission barrier to the scission point. Upon heating a fissile nucleus in this region to temperatures of T ≈ 1 MeV (this is predicted by many theoretical models of the fission process), the Coriolis interaction uniformly mixes the possible projections of the fissile-nucleus spin for the case of low spin values, this leading to the loss of memory about transition fission states in the asymptotic region where the angular distributions of fragments are formed. Within quantum-mechanical fission theory, which takes into account deviations from A. Bohr’s formula, the angular distributions of fragments are calculated for spontaneously fissile nuclei aligned by an external magnetic field at ultralow temperatures, and it is shown that an analysis of experimental angular distributions of fragments would make it possible to solve the problem of spin-projection conservation for fissile nuclei in the external region.  相似文献   

4.
5.
The mass-energy distributions of fragments originating from the fission of the compound nucleus 226Th and their correlations with the multiplicity of gamma rays emitted from these fragments are measured and analyzed in 18O + 208Pb interaction induced by projectile oxygen ions of energy in the range E lab = 78–198.5 MeV. Manifestations of an asymmetric fission mode, which is damped exponentially with increasing E lab, are demonstrated. Theoretical calculations of fission valleys reveal that only two independent valleys, symmetric and asymmetric, exist in the vicinity of the scission point. The dependence of the multiplicity of gamma rays emitted from both fission fragments on their mass, Mγ(M), has a complicated structure and is highly sensitive to shell effects in both primary and final fragments. A two-component analysis of the dependence Mγ(M) shows that the asymmetric mode survives in fission only at low partial-wave orbital angular momenta of compound nuclei. It is found that, for all E lab, the gamma-ray multiplicity Mγ as a function of the total kinetic energy (TKE) of fragments, Mγ(TKE), decreases linearly with increasing TKE. An analysis of the energy balance in the fission process at the laboratory energy of E lab = 78 MeV revealed the region of cold fission of fragments whose total kinetic energy is TKE ~Q max.  相似文献   

6.
A way of calculating the average spins of induced fission fragments is developed, based on the dynamic model of their angular distributions. The range of relaxation times for the degree of freedom associated with the orientation of the axis of symmetry of a fissioning nucleus relative to its total angular momentum is determined by analyzing experimental data on the energy dependences of average spins and the anisotropy of the angular distributions of fission fragments for the 12C, 16O + 232Th reactions at E сm = 55–150 MeV.  相似文献   

7.
8.
The angular distributions of fragments from neutron-induced fission of 232Th have been measured by means of glass detectors in the range 12.2 MeV ≦ En ≦ 18.3 MeV. The behaviour of the angular anisotropy is analysed and the contribution of the (n, 2n′f) process is discussed.  相似文献   

9.
Anisotropy in the angular distributions of cascade-evaporation neutrons in center-of-mass systems emitting their fission fragments is analyzed in the context of the quantum theory of fission. It is emphasized that such anisotropy is caused not by bending but by wriggling oscillations of the fissioning nucleus in the vicinity of its point of scission; these lead to the appearance of high-value spins of primary fission fragments [(J)\vec]1\vec J_1 and [(J)\vec]2\vec J_2 oriented in a plane perpendicular to direction [(n)\vec]0\vec n_0 of the axis of symmetry of the fissioning nucleus at the instant of scission. This direction coincides with the asymptotic direction of the emission of fission fragments with a high degree of accuracy. The analytical dependences of the anisotropy coefficient on the orbital momentum l and total spin j in angular distributions of cascade-evaporation neutrons are calculated using the methods developed in analyzing angular distributions of cascade-evaporation gamma quanta. The proper spin of a neutron is shown to have almost no effect on the aforesaid anisotropy coefficient due to the weak dependence of the neutron transmission coefficient T lj ([`(e)]\bar \varepsilon ) on the values of j.  相似文献   

10.
Mass-spectroscopicdata on the yields of heavy products originating from the thermal-neutron-induced fission of 235U nuclei are presented over broad ranges of mass numbers A (125 ? A ? 155), kinetic energies E k (40 ? E k ? 80 MeV), and effective ion charges z* (18 ? z* ? 29). The potential energy of a fissile system at the scission point is analyzed with allowance for the positions of the minima that correspond to the most probable ways of separation of the system for the standard (S2) and superasymmetric (S3) fission modes.  相似文献   

11.
It is shown that, because of sufficiently large energy spacing between neutron resonance states (NRS-II) in the second well of the deformation potential for actinide nuclei, the Coriolis interaction, mixing the states of an axially symmetric deformed nuclei with different values of the projection K of the nuclear spin J onto the symmetry axis, is week, and the K value in the wave functions of NRS-II is a good quantum number. It is concluded that the K distribution for the states of fissile actinide nuclei in the vicinity of their scission point into fission fragments is determined by simultaneous influence of the internal and external fission barriers, which allows to coordinate the experimental data on subbarrier photofission with the P-odd and P-even correlations in the angular distributions of fission fragments.  相似文献   

12.

Within a dynamical approach, the average spins of fission fragments originating from the 12C + 235,236U and 13C + 235U complete fusion reactions at c.m. energies in the range of Ec.m. = (55–75) MeV are analyzed as a function of energy. Particular attention is given to the process of formation of initial distributions for the components of the total angular momentum of compound nuclei. It is shown that substantial distinctions in the behavior of average spins of fission fragments for different fusion reaction channels are expected to be observed in the range of subbarrier energies.

  相似文献   

13.
The fragment mass yields in fission of 235U induced by thermal neutrons for A = 145–160 and EK = 50–75 MeV were measured using a mass spectrometer. The fine structure is observed at A = 153, 154 and EK = 50–60 MeV. The obtained results were described in the framework of a model based on the dinuclear system concept. The analyzed correlation between the total kinetic energy and mass distribution of fission fragments is connected with the shell structure of the formed fragments of fission. From this correlation and the time dependence of the calculated mass distribution of the binary reaction products, one can conclude that the descent time from a saddle point to a scission point for the more deformed fragments is longer than that for fragments of more compact shape.  相似文献   

14.
Correlations between folding angular distributions of fission fragments and the gamma-ray multiplicity are studied for 18O + 208Pb interactions at energies of the beam of 18O ions in the range E lab = 78–198.5 MeV. The probabilities are determined for complete-and incomplete-fusion processes inevitably followed by the fission of nuclei formed in these processes. It is found that the probability of incomplete fusion followed by fission increases with increasing energy of bombarding ions. It is shown that, for the incomplete-fusion process, folding angular distributions of fission fragments have a two-component structure. The width of folding angular distributions (FWHM) for complete fusion grows linearly with increasing energy of 18O ions. The multiplicity of gamma rays from fission fragments as a function of the linear-momentum transfer behaves differently for different energies of projectile ions. This circumstance is explained here by the distinction between the average angular momenta of participant nuclei in the fusion and fission channels, which is due to the difference in the probabilities of fission in the cases where different numbers of nucleons are captured by the target nucleus.  相似文献   

15.
A unified mechanism of the emergence of T-odd ROT- and TRI-asymmetries is proposed for describing experimental T-odd asymmetry coefficients D(θ) in the angular distributions of prescission alphaparticles that are emitted in true ternary and quaternary nuclear fission reactions induced by cold polarized neutrons. The mechanism is related to the different ways in which the Coriolis interaction of the total spin of a polarized compound fissile nucleus with the orbital moment of alpha-particles affects even (for ROT-asymmetries) and odd (for TRI-asymmetries) components of the amplitude of an undisturbed angular distribution of emitted alpha-particles. Coefficients DROT(θ) and DTRI(θ) derived with this mechanism for T-odd ROT- and TRI-asymmetries successfully describe the dependences of corresponding experimental coefficients for 235U and 239Pu nuclei over the range of angles θ, and for the 233U nucleus in the angular range of 60° < θ < 110°. It is explained why only ROT-type T-odd asymmetries emerge for evaporated neutrons and γ-quanta emitted by fission fragments in similar reactions if we allows for the Coriolis interaction of the total spin of the compound fissile nucleus with the orbital moments of the fission fragments and the wriggling vibrations of the above nucleus near its scission point.  相似文献   

16.
A dynamical approach is proposed for calculating the angular distributions of fission fragments. The relaxation time for the degree of freedom associated with the projection of the total angular momentum of the nuclear system onto the symmetry axis and the coefficient of damping of the fission mode are the basic parameters of this approach. Experimental data on the anisotropy of the angular distributions of fission fragments and on the multiplicities of prescission neutrons are analyzed within the proposed model for 16O+208Pb (E lab=110–148 MeV), 16O+232Th (120–160 MeV), 16O+248Cm (110–148 MeV), and 16O+238U (96–148 MeV). The relaxation time and the damping coefficient are estimated at τK=(5–6)×10?21 s and β=4×1021 s?1, respectively.  相似文献   

17.
A dynamical-statistical model is used to analyze the experimental angular distributions of fission fragments in the reactions α + 238U, 237Np at E α = 20–100 MeV, as well as to determine the Am isotope fission probabilities and the shape isomer yields in the reactions d + 242,240Pu at E d = 20–30 MeV. Manifestations of shell effects are found in the fission barrier structure up to the excitation energies of 50–60 MeV.  相似文献   

18.
19.
Trajectory calculations of the angular distribution of fragments originating from the spontaneous true ternary fission of 252Cf nuclei are performed with allowance for the rotation of the fissile-nucleus axis. This rotation arises upon scission because of the formation of fragment spins despite the conservation of zero total angular momentum at all fission stages. The calculations in question lead to the conclusion that a collinear tripartition is the most probable in spontaneous true ternary fission of 252Cf nuclei. This confirms experimental data, thereby creating the basis that is necessary for obtaining deeper insight into them.  相似文献   

20.
T-odd asymmetries in the angular distributions of evaporation neutrons emitted by thermalized fission fragments in the fission of axially symmetric deformed nuclei by cold polarized neutrons are investigated within the quantum theory of fission. The asymmetries in question are due to the anisotropy of angular distributions of evaporation neutrons in the center-of-mass systems of the fission fragments, and this anisotropy arises from the orientation of large-value fission fragment spins in the direction perpendicular to the direction K 0 of the symmetry axis of the fissioning nucleus at the time of its scission, caused by zero wriggling vibrations of the fissioning nucleus. The angle of rotation of the vector k 0 with respect to the asymptotic direction k 0 of the fissioning nucleus symmetry axis is calculated with allowance for the interference of fission amplitudes of neutron resonances excited in a fissioning nucleus as it captures an incident neutron. It is shown that the T-odd asymmetry coefficient for evaporation neutrons is close in structure and value to the analogous coefficient for evaporation γ-rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号