首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methane chemisorption has been recently demonstrated on the rutile IrO2(110) surface. However, it remains unclear how the general requirements are for methane chemisorption or complexation with a single atom on an oxide surface. By exploring methane adsorption on Pt1 substitutionally doped on many rutile-type oxides using hybrid density functional theory, we show that the occupancy of the Pt dz2 orbital is the key to methane chemisorption. Pt single atom on the semiconducting or wide-gap oxides such as TiO2 and GeO2 strongly chemisorbs methane, because the empty Pt dz2 orbital is located in the gap and can effectively accept σ-electron donation from the methane C−H bond. In contrast, Pt single atom on metallic oxides such as IrO2 and RuO2 does not chemisorb methane, because the Pt dz2 orbital strongly mixes with the support-oxide electronic states and become more occupied, losing its ability to chemisorb methane. This study sheds further light on the impact of the interaction between a Pt single atom and the oxide support on methane adsorption.  相似文献   

2.
Recent theoretical studies on the electronic structures of oxide surfaces by the DV-Xα cluster method are reviewed. The aim is to elucidate the major material and structural factors governing the surface electronic structure. Special attention is paid to the properties of the electronic states which are related to the surface chemical activities. To give a comprehensive picture of the electronic structure of oxide surfaces, topics are selected from several different types of oxides including MgO, MO (where M denotes 3D transition metals), TiO2, SrTiO3, ReO3, ZnO. Electronic structure of oxygen chemisorbed on metals, which is the initial step of the oxide formation, is also studied. The important role of the partially filled d band and the influence of the chemisorption geometry is clarified in detail. Oxygen vacancy and other surface imperfections introduce localized electronic states, often with the energy level deep in the gap. They form active centers in the surface chemical processes. The charge compensation mechanism and the related peculiar properties of the polar surfaces are discussed. The chemisorption of oxygen, proton and hydroxyl on the oxide surface is investigated and the mechanism of the acidic and basic sites are discussed.  相似文献   

3.
Understanding ammonia oxidation over metal oxide surfaces is crucial for improving its detection with resistive type gas sensors. Formation of NOx during this process makes sensor response and calibration unstable. Cr-doping of nanocrystalline metal oxides has been reported to suppress NO2 sensitivity and improve response towards NH3, however the exact mechanism of such chromium action remained unknown. Herein, by using EPR spectroscopy we demonstrate formation of Cr(VI) lattice defects on the surface of nanocrystalline Cr-doped SnO2. Enhancement of Cr-doped SnO2 surface acidity and ammonia adsorption as a result has been revealed by using in situ IR spectroscopy. Moreover, a decrease in concentration of free electrons in the conduction band has been shown as a result of substitutional Cr(III) defects formation. Weaker NOx chemisorption during ammonia oxidation over SnO2 surface after Cr doping has been found with the use of mass-spectrometry assisted NH3 thermo-programmed desorption. The given example of surface acidity adjustment and electronic configuration by means of doping may find use in the design of new gas-sensing metal oxide materials.  相似文献   

4.
High-valent metal-oxo (HVMO) species are powerful non-radical reactive species that enhance advanced oxidation processes (AOPs) due to their long half-lives and high selectivity towards recalcitrant water pollutants with electron-donating groups. However, high-valent cobalt-oxo (CoIV=O) generation is challenging in peroxymonosulfate (PMS)-based AOPs because the high 3d-orbital occupancy of cobalt would disfavor its binding with a terminal oxygen ligand. Herein, we propose a strategy to construct isolated Co sites with unique N1O2 coordination on the Mn3O4 surface. The asymmetric N1O2 configuration is able to accept electrons from the Co 3d-orbital, resulting in significant electronic delocalization at Co sites for promoted PMS adsorption, dissociation and subsequent generation of CoIV=O species. CoN1O2/Mn3O4 exhibits high intrinsic activity in PMS activation and sulfamethoxazole (SMX) degradation, highly outperforming its counterpart with a CoO3 configuration, carbon-based single-atom catalysts with CoN4 configuration, and commercial cobalt oxides. CoIV=O species effectively oxidize the target contaminants via oxygen atom transfer to produce low-toxicity intermediates. These findings could advance the mechanistic understanding of PMS activation at the molecular level and guide the rational design of efficient environmental catalysts.  相似文献   

5.
Various metal oxides with 0.1 wt% Ag loaded as a cocatalyst were prepared by an impregnation method and examined their photocatalytic activity for CO2 reduction with water. Among all the prepared Ag-loaded metal oxides, Ga2O3, ZrO2, Y2O3, MgO, and La2O3 showed activities for CO and H2 productions under ultraviolet light irradiation. Thus, metal oxides involving metal cations with closed shell electronic structures such as d0, d10, and s0 had the potential for CO2 reduction with water. In situ Fourier transform infrared measurement revealed that the photocatalytic activity and selectivity for CO production are controlled by the amount and chemical states of CO2 adsorbed on the catalyst surface and by the surface basicity, as summarized as follows: Ag/ZrO2 enhanced H2 production rather than CO production due to very little CO2 adsorption. Ag/Ga2O3 exhibited the highest activity for CO production, because adsorbed monodentate bicarbonate was effectively converted to bidentate formate being the reaction intermediates for CO production owing to its weak surface basicity. Ag/La2O3, Ag/Y2O3, and Ag/MgO having both weak and strong basic sites adsorbed larger amount of carbonate species including their ions and suppressed H2 production. However, the adsorbed carbonate species were hardly converted to the bidentate formate.  相似文献   

6.
Complex vanadium and titanium oxides modified by copper ions are studied by the electrochemical and ESR methods. Oxides Cu x V2?y Ti y O5?δ·nH2O (0<y<1.33) have a layered structure and oxides Cu x Ti1?y V y O5+δ·nH2O (0<y<0.25), an anatase structure. The intercalation of cations Cu2+ into the hydrates leads to oxidation of V4+. According to ESR data, V4+ exists in the oxides in the form of VO2+ and an octahedral surround of oxygen (V4+?O6), respectively. The electroreduction of ions of d-elements and chemisorbed oxygen in the oxides is analyzed. The intercalation of cations Cu2+ alters the content of V4+ and the chemisorption ability of the oxides. Possible reasons for this phenomenon are discussed.  相似文献   

7.
《Comptes Rendus Chimie》2003,6(1):135-145
In order to clarify the competition of exchange and correlation energies vs crystal-field stabilisation energy, a simple approach is proposed. The exchange and correlation contributions are described on the base of Brandow and Kanamori’s U, U′ and JH parameters. The dependence of the crystal field effect on site distortion has simply been modelled using a linear interpolation between undistorted and fully distorted sites. This approach leads to establish phase diagrams for d4, d5 and d6 cations, allowing us to predict the spin-state stability range depending on exchange (JH), crystal field (Dq) and distortion (k) parameters. It can be used to complement the Extended Hückel Tight Binding calculations of the electronic structure of materials having a noticeable ionic character such as 3d transition-metal oxides, in order to interpret the electronic behaviour, and, particularly, discuss the insulating-vs-metallic character of these oxides. To cite this article: M. Pouchard et al., C. R. Chimie 6 (2003) 000–000.  相似文献   

8.
For the first time a comparative study of rhombohedral LaNiO3 and LaCuO3 oxides, using 57Fe Mössbauer probe spectroscopy (1% atomic rate), has been carried out. In spite of the fact that both oxides are characterized by similar crystal structure and metallic properties, the behavior of 57Fe probe atoms in such lattices appears essentially different. In the case of LaNi0.99Fe0.01O3, the observed isomer shift (δ) value corresponds to Fe3+ (3d5) cations in high-spin state located in an oxygen octahedral surrounding. In contrast, for the LaCu0.99Fe0.01O3, the obtained δ value is comparable to that characterizing the formally tetravalent high-spin Fe4+(3d4) cations in octahedral coordination within Fe(IV) perovskite-like ferrates. To explain such a difference, an approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that in the case of LaNi0.99Fe0.01O3, electronic state of nickel is dominated by the d7 configuration corresponding to the formal ionic “Ni3+-O2−” state. On the other hand, in the case of LaCu0.99Fe0.01O3 a large amount of charge is transferred via Cu-O bonds from the O:2p bands to the Cu:3d orbitals and the ground state is dominated by the d9L configuration (“Cu2+−O” state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3++O(L)→Fe4++O2−, which transforms “Fe3+” into “Fe4+” state. The analysis of the isomer shift value for the formally “Fe4+” ions in perovskite-like oxides clearly proved a drastic influence of the 4s iron orbitals population on the Fe−O bonds character.  相似文献   

9.
Summary A comparison of the change in the rules of chemisorption of gas-acceptors and donors of electrons with catalytic activity for processes with gases of the same type showed that the change in the catalytic properties of NiO and ZnO and their solid solutions may be explained by the effect of dissolved oxides Li2O, Ga2O3, Fe2O3, etc., on chemisorption. The change in chemisorption is considered to be connected with the effect of cations with an anomalous charge in the lattice points on the statistics of the active centers on the surface.  相似文献   

10.
Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3; the former exhibit a low onset overpotential of 380 mV at 10 mA cm−2 and a small Tafel slope of 70.8 mV dec−1. Oxygen vacancy formation is accompanied by mixed Ni2+/Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.  相似文献   

11.
Metallocene alkyl complexes with d0 electron configuration and d8-configured square planar α-diimine late transition metal alkyl complexes show activity in both C−H activation through σ-bond metathesis and olefin insertion. Herein, we show by analysis of their M−CH3 13C chemical shift tensors that these reactions involve a π(M−C) interaction in the horizontal plane of the complex for both d0 and d8 systems. While in the case of d0 systems the interaction of an empty metal d-orbital and a filled carbon p-orbital causes partial alkylidene character of the M−C bond, the corresponding metal d-orbital is filled in d8 systems, thus generating a filled π*(M−C) orbital that increases the anionic character of the methyl group. This entails fundamentally different reaction mechanisms for d0 and d8 systems, which are reflected in the structures of the transition states: While d0 olefin insertion can be viewed as a [2+2] cycloaddition reaction, d8 olefin insertion rather resembles methyl group migration onto a positively polarized olefin, thus explaining the observed differences in regioselectivity. These findings are translated to σ-bond metathesis, a reaction which is isolobal to olefin insertion for both early and late transition metals.  相似文献   

12.
J.R. Grunwell  S.I. Hanhan 《Tetrahedron》1973,29(11):1473-1479
A combination of experimental data and the CNDO/2-SCF-MO method are used to evaluate the importance of d-orbitals to the electronic structure of aryl thiol esters. The thioester group is calculated to withdraw electron density through σ and 2pπ-3dπ bonding and donate by pπ-pπ bonding. Electron donating substituents para to the thiol ester group cause the latter group to accept electron density regardless of d-orbital participation.  相似文献   

13.
Oxygen defects are among essential issues and required to be manipulated in correlated electronic oxides with insulator-metal transition (IMT). Besides, surface and interface control are necessary but challenging in field-induced electronic switching towards advanced IMT-triggered transistors and optical modulators. Herein, we demonstrated reversible entropy-driven oxygen defect migrations and reversible IMT suppression in vanadium dioxide (VO2) phase-change electronic switching. The initial IMT was suppressed with oxygen defects, which is caused by the entropy change during reversed surface oxygen ionosorption on the VO2 nanostructures. This IMT suppression is reversible and reverts when the adsorbed oxygen extracts electrons from the surface and heals defects again. The reversible IMT suppression observed in the VO2 nanobeam with M2 phase is accompanied by large variations in the IMT temperature. We also achieved irreversible and stable IMT by exploiting an Al2O3 partition layer prepared by atomic layer deposition (ALD) to disrupt the entropy-driven defect migration. We expected that such reversible modulations would be helpful for understanding the origin of surface-driven IMT in correlated vanadium oxides, and constructing functional phase-change electronic and optical devices.  相似文献   

14.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

15.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co? As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

16.
Catalysts based on Mn-substituted cordierite 2MnO · 2Al2O3 · 5SiO2 have been synthesized using different manganese oxides (MnO, Mn2O3, and MnO2) at a calcination temperature of 1100°C. The catalysts differ in their physicochemical properties, namely, phase composition (cordierite content and crystallinity), manganese oxide distribution and dispersion, texture, and activity in high-temperature ammonia oxidation. The synthesis involving MnO yields Mn-substituted cordierite with a defective structure, because greater part of the manganese cations is not incorporated in this structure and is encapsulated and the surface contains a small amount of manganese oxides. This catalyst shows the lowest ammonia oxidation activity. The catalysts prepared using Mn2O3 or MnO2 are well-crystallized Mn-substituted cordierite whose surface contains different amounts of manganese oxides differing in their particle size. They ensure a high nitrogen oxides yield in a wide temperature range. The product yield increases with an increasing surface concentration of Mn3+ cations. The highest NOx yield (about 76% at 800–850°C) is observed for the MnO2-based catalyst, whose surface contains the largest amount of manganese oxides.  相似文献   

17.
A simple, but general model which enables prediction of the electronic structure adopted by ad n ion in an axially distorted octahedron of ligands (D 4h) is described. The variousd n configurations (n = 1 to 9) are briefly reviewed with some recent results concerning the stabilization of unusual electronic configurations or oxidation states in oxides.  相似文献   

18.
The ground state electronic structures of several metal atom cluster compounds, Re3Cl9, Re3Cl3?12 and Mo6Cl2?14, have been calculated by the SCF Xα SW method. The results are consistent with the earlier d-orbital overlap patterns and with the reported spectroscopic properties.  相似文献   

19.
Electronic structure of Mg9O9 and Mg9O8 clusters modeling nano-crystalline powders of magnesium oxide has been analyzed within the frames of the density functional theory (DFT). In the framework of time-dependent DFT method (TD-DFT), the relationship between the surface and bulk properties of nano-crystals is analyzed based on variations in the density of electronic states (DOS) and changes of electronic spectra. The spectroscopy of spatial defects like low-coordinated oxygen ions and of surface point defects like F+- and F-centers is investigated. Optical properties of the nano-sized crystalline magnesium oxide are characterized by a spectrum of absorption bands in the range of 1-5 eV. Point defects such as F-centers absorb light in the range of 1.2-1.5 eV. Spatial defects OLC in nano-crystals generate absorption bands in the range of 2.5-5.0 eV. According to calculations, there is no direct relation between coordination numbers of surface ions and excitation energies. Theoretical excitation energies are compared with experimental optical properties of the F+- and F-centers.  相似文献   

20.
Variation of surface energy of a bentonite by chemical and thermal treatments. The effect of an attack by hydrochloric acid and of thermal treatments on the dispersive surface energy, γds, and on the morphology index of a bentonite has been studied by inverse gas chromatography at infinite dilution. The results show that γds is very sensitive to two parameters: one is the atomic scale morphology of the clay material, the other one is the mineral impurity contents, mainly composed of alkaline and alkaline-earth oxides. The large increase of γds after a moderate treatment [t < 10 h, HC1 < 2N and thermal treatment temperature (TTT)≤300°C] is attributed to the bentonite purification and to the lateral surface appearence. However, a more severe treatment (t>10h, HC1 >3N et TTT > 500°C) destroys the lamellar structure of the montmorillonite and in this case the measured γds is attributed to the basal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号