首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
4-Aminobenzenthiol (4-ABT) is an unusual molecule, showing variable surface-enhanced Raman scattering (SERS) spectra depending upon measurement conditions. In an effort to reduce ambiguity and add clarity, we have thus conducted an ultraviolet-visible (UV-vis) extinction measurement, along with Raman scattering measurement, after adding 4-ABT into aqueous Ag sol. Upon the addition of 4-ABT, the surface plasmon absorption band of Ag at 410 nm gradually diminished and, concomitantly, a weak and broad band developed at longer wavelengths, obviously because of the aggregation of Ag nanoparticles. At the same time, the Raman scattering peaks of 4-ABT varied in intensity as the Ag particles proceeded to form aggregates. A close examination revealed that the peak intensity of the ring 7a band of 4-ABT, a typical a(1) vibrational mode, could be correlated with the UV-vis extinction of the Ag sol measured at the excitation laser wavelength. In a separate Raman measurement conducted using sedimented Ag colloidal particles, 4-ABT was found not to be subjected to any surface-induced photoreaction, implying that all of the observable Raman peaks were, in fact, solely due to 4-ABT on Ag. The intensities of the b(2)-type bands, such as the ring 3, 9b, and 19b modes of 4-ABT, were then analyzed and found to be invariant with respect to the 7a band, irrespective of the extent of Ag aggregation as far as at a fixed excitation wavelength. The intensity ratio of the b(2)-type/7a bands would then reflect the extent of the chemical enhancement that was involved in the SERS of 4-ABT in aggregated Ag sol.  相似文献   

2.
The surface-enhanced Raman scattering (SERS) of 4,4'-dimercaptoazobenzene (4,4'-DMAB), an alpha, omega-dithiol possessing also an azo moiety, has seen a surge of interest recently, since 4,4'-DMAB might be able to form from 4-aminobenzenethiol (4-ABT) via a surface-induced photoreaction. An understanding of the intrinsic SERS characteristics of 4,4'-DMAB is thus very important to evaluate the possibility of such a photoreaction. We found in this work that 4,4'-DMAB should adsorb on a flame-annealed Au substrate via one of its two thiol groups such that Au nanoparticles could adsorb further on the pendent thiol group, forming a SERS hot site. The most distinctive feature in the SERS of 4,4'-DMAB was the appearance of a(g) bands, which were quite similar to the b(2)-type bands occurring in the SERS of 4-ABT. In an electrochemical environment, the a(g) bands of 4,4'-DMAB at 1431, 1387, and 1138 cm(-1) became weakened at lower potentials, completely disappearing at -1.0 V, but the bands were restored upon increasing the electrode potential, implying that neither electro- nor photo-chemical reaction to break the azo group took place, in agreement with data from a cyclic voltammogram. The appearance and disappearance of these a(g) bands are thus concluded to be associated with the charge transfer phenomenon: 4,4'-DMAB must then be one of a unique group of compounds exhibiting chemical enhancement when subjected to a SERS environment.  相似文献   

3.
Raman scattering measurements were conducted for 4-aminobenzenethiol (4-ABT) assembled on powdered copper substrates. Initially, very weak Raman peaks were detected, but upon attaching Ag nanoparticles probably via NH2 groups onto 4-ABT/Cu, distinct Raman spectra were observed. Considering the fact that no Raman peak was identified when Ag nanoparticles were adsorbed on 4-aminophenyl-derivatized silane monolayers assembled on silica powders, the Raman spectra observed for Ag@4-ABT/Cu should be surface-enhanced Raman scattering (SERS) spectra, occurring by an electromagnetic coupling of the localized surface plasmon of Ag nanoparticles with the surface plasmon polariton of Cu powders. The extra enhancement factor attainable by the attachment of a single Ag nanoparticle is estimated to be as large as 1.4 x 10(5) in the case when 632.8-nm radiation is used as the excitation source. When Au nanoparticles were attached onto 4-ABT/Cu, at least an order of magnitude weaker Raman spectra were obtained at all excitation wavelengths, however, indicating that the Au-to-Cu coupling should be far less effective than the Ag-to-Cu coupling for the induction of SERS.  相似文献   

4.
Active surface-enhanced Raman scattering (SERS) silver nanoparticles substrate was prepared by multiple depositions of Ag nanoparticles on glass slides. The substrate is based on five depositions of Ag nanoparticles on 3-aminopropyl-trimetoxisilane (APTMS) modified glass slides, using APTMS sol–gel as linker molecules between silver layers. The SERS performance of the substrate was investigated using 4-aminobenzenethiol (4-ABT) as Raman probe molecule. The spectral analyses reveal a 4-ABT Raman signal enhancement of band intensities, which allow the detection of this compound in different solutions. The average SERS intensity decreases significantly in 4-ABT diluted solutions (from 10−4 to 10−6 mol L−1), but the compound may still be detected with high signal/noise ratio. The obtained results demonstrate that the Ag nanoparticles sensor has a great potential as SERS substrate.  相似文献   

5.
Raman scattering measurements were conducted for a 4-aminobenzenethiol (4-ABT) monolayer assembled on a macroscopically smooth Au substrate. Although no peak was detected at the beginning, Raman peaks were distinctly observed by attaching Ag or Au nanoparticles onto the 4-ABT monolayer (Ag(Au)@4-ABT/Au(flat)). Considering the fact that no Raman signal is observed when Ag (Au) nanoparticles are adsorbed on a (4-aminophenyl)silane monolayer assembled on a silicon wafer, the Raman spectrum observed for Ag(Au)@4-ABT/Au(flat) must be a surface-enhanced Raman scattering (SERS) spectrum, derived from the electromagnetic coupling of the localized surface plasmon of Ag (Au) nanoparticles with the surface plasmon polariton of the underneath Au metal. The electromagnetic coupling responsible for SERS appeared to be governed more by the bulk Au substrate than the sparsely distributed Ag or Au nanoparticles. The chemical enhancement appeared on the other hand to be derived more from the formation of Au-S bonds than any charge-transfer interaction between the protonated amine group and the Au or Ag nanoparticles. The enhancement factors derived from the attachment of a single Ag or Au nanoparticle onto 4-ABT on Au were estimated to be as large as 8.3 x 10(5) and 5.0 x 10(5), respectively, (for the ring 3 band (b(2)) near 1390 cm(-1)) in which a factor of approximately 10(2) was presumed to be due to the chemical effect, with the remaining contributed by the electromagnetic effect.  相似文献   

6.
We describe a very simple electroless plating method that can be used to prepare Ag-coated polystyrene beads. Robust Ag nanostructures are reproducibly fabricated by soaking polystyrene beads in ethanolic solutions of AgNO(3) and butylamine. When the molar ratio of butylamine to AgNO(3) is far below 1.0, distinct nanosized Ag particles are formed on the polystyrene beads, but by increasing the amount of butylamine, network-like Ag nanostructures are formed that possess very broad UV/vis absorption characteristics extending from the near-UV to near-infrared regions. In conformity with the UV/vis absorption characteristics, the Ag-deposited polystyrene beads were highly efficient surface-enhanced Raman scattering (SERS) substrates, with an enhancement factor estimated using 4-aminobenzenethiol (4-ABT) as a model adsorbate to be larger than 1.1x10(6). On the basis of the nature of the SERS peaks of 4-ABT, those Ag-deposited polystyrene beads were confirmed, after attaching biotin groups over 4-ABT, to selectively recognize streptavidin molecules down to concentrations of 10(-11) g mL(-1) (i.e., approximately 0.2 pM). Since a number of different molecules can be used as SERS-marker molecules (such as 4-ABT), multiple bioassays are readily accomplished via SERS after attaching appropriate host or guest molecules onto them.  相似文献   

7.
A nanogap formed by a metal nanoparticle and a flat metal substrate is one kind of "hot site" for surface-enhanced Raman scattering (SERS). Accordingly, although no Raman signal is observable when 4-aminobenzenethiol (4-ABT), for instance, is self-assembled on a flat Au substrate, a distinct spectrum is obtained when Ag or Au nanoparticles are adsorbed on the pendent amine groups of 4-ABT. This is definitely due to the electromagnetic coupling between the localized surface plasmon of Ag or Au nanoparticle with the surface plasmon polariton of the planar Au substrate, allowing an intense electric field to be induced in the gap even by visible light. To appreciate the Raman scattering enhancement and also to seek the optimal condition for SERS at the nanogap, we have thoroughly examined the size effect of Ag nanoparticles, along with the excitation wavelength dependence, by assembling 4-ABT between planar Au and a variable-size Ag nanoparticle (from 20- to 80-nm in diameter). Regarding the size dependence, a higher Raman signal was observed when larger Ag nanoparticles were attached onto 4-ABT, irrespective of the excitation wavelength. Regarding the excitation wavelength, the highest Raman signal was measured at 568 nm excitation, slightly larger than that at 632.8 nm excitation. The Raman signal measured at 514.5 and 488 nm excitation was an order of magnitude weaker than that at 568 nm excitation, in agreement with the finite-difference time domain simulation. It is noteworthy that placing an Au nanoparticle on 4-ABT, instead of an Ag nanoparticle, the enhancement at the 568 nm excitation was several tens of times weaker than that at the 632.8 nm excitation, suggesting the importance of the localized surface plasmon resonance of the Ag nanoparticles for an effective coupling with the surface plasmon polariton of the planar Au substrate to induce a very intense electric field at the nanogap.  相似文献   

8.
In this study, we demonstrate that 2-microm-sized Ag (microAg) powders can be used as a core material for constructing molecular sensing/recognition units operating via surface-enhanced Raman scattering (SERS). This is possible because microAg powders are very efficient substrates for both the infrared and Raman-spectroscopic characterization of molecular adsorbates prepared in a similar manner on silver surfaces; we can obtain an infrared spectrum of organic molecules adsorbed on microAg particles with a very high signal-to-noise ratio by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and the Raman spectrum of organic monolayers on powdered silver is an SERS spectrum. The agglomeration of microAg particles in a highly concentrated buffer solution could be prevented by the layer-by-layer deposition of cationic and anionic polyelectrolytes such as poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). In fact, prior to depositing PAA and PAH, 4-aminobenzenethiol (4-ABT) was assembled on the surfaces of the microAg particles as SERS markers. Because of the presence of amine groups of 4-ABT, PAA could be readily deposited on the microAg particles. On the other hand, the outermost PAA layer could also be derivatized with biotin-derivatized poly(L-lysine). The nonspecific interaction of poly(L-lysine) with proteins could be suppressed by grafting poly(ethylene glycol) into the biotin-derivatized poly(L-lysine) molecules. On the basis of the nature of the SERS peaks of 4-ABT, it was confirmed that these biotinylated microAg powders were effective in selectively recognizing the streptavidin arrays. Because a number of different molecules can be used as SERS-marker molecules, such as probable 4-ABT, commercially available microAg powders must be a prospective material in molecular sensing/recognition, particularly via SERS.  相似文献   

9.
通过自组装方法以对巯基苯胺(PATP)为偶联分子, 在石英基片上构筑了多种形貌的银钠米粒子单层结构和三明治结构. 研究了组装膜在不同激发线下表面增强拉曼散射(SERS)的增强差异. 研究结果表明, 单层基底和三明治基底中偶联分子的SERS信号因银纳米粒子间的电磁场耦合而显著增强, 且在三明治结构中增强更加明显. 对复合SERS基底增强因子进行计算可知, 复合SERS基底的表面等离子体共振(SPR)峰与激发线的匹配程度越好, 其增强因子越大. 在三明治结构中更易发生PATP分子转变为对巯基偶氮苯(DMAB)分子的激光诱导催化偶联反应. 另外, 该激光诱导催化偶联反应与激发波长密切相关.  相似文献   

10.
本文采用氧化还原循环处理电极首次得到Ag/0.1 mol L~(-1)NH_3+0.1 mol L~(-1)NH_4Cl体系中吸附在银电极上氨分子的表面增强拉曼散射(SERS)效应。按氨分子在电极表面上的吸附量为每平方厘米8×10~(15)计算, 增加因子为1.2×10~5。谱峰强度及位置随电极电位改变。吸附氨分子的SERS谱与Ag(NH_3)_2~+的正常拉曼光谱类似。本文结果表明电极表面上存在Ag(δ+)络合物, 它可能是SERS效应的活性中心, 用这个概念可较好地解释本文实验结果。通过谱图分析给出了Ag(δ+)表面络合物的可能结构模式。  相似文献   

11.
采用原位电化学表面增强拉曼光谱(EC-SERS)研究了硫代水杨酸(TSA)吸附在活性Au电极表面的自组装单分子层(SAMs).TSA在活性Au表面的化学吸附及不同酸碱度下的TSA浸饰单层膜的SERS光谱,表明随pH值的增加,峰强呈现2个不同的下降阶段.通过EC-SERS考察不同电富集时间和电位的影响,显示在酸性介质和0.7 V及70 s富集时间下,可以获得最大EC-SERS信号,并随着电位负移,信号逐渐减弱,直至基本消失,表明TSA分子在Au表面排布状态会随外加条件的改变而发生变化.通过计算TSA在不同pH值下的分布分数以及探针分子在不同电位下的增强因子(EF),结合SERS和EC-SERS的变化走势对比,得出TSA在活性Au表面自组装形成单分子层/膜的机理,指出由于TSA不同的电化学吸附取向,以及高负电位下的还原/脱附作用,使得Au表面拉曼活性降低,造成EF显著减小,不可逆地失去了SERS的活性.  相似文献   

12.
运用时间分辨表面增强拉曼光谱(TRSERS)结合电位双阶跃的方法, 研究了硫脲衍生物甲基硫脲(MTU)和烯丙基硫脲(ATU)在银电极表面与ClO4^-离子的共吸附行为, SERS强度-时间曲线表明它们各自相应的SERS谱峰强度随电位阶跃的响应速率不同, 离电极表面较近的基团的特征谱峰强度的响应速率较快; MTU以S端且垂直吸附在电极表面,ATU也以S端和表面发生化学吸附, 但整个分子斜躺吸附在电极表面上。  相似文献   

13.
We examined the deboronation reaction of 4‐mercaptophenylboronic acid (4MPBA) via fructose and glucose on silver surfaces by means of surface‐enhanced Raman scattering (SERS) at the excitation wavelengths of 488, 514, and 633 nm. The SERS spectra on silver nanoparticles clearly exhibited specific spectral signatures of thiophenol (TP) peaks, indicating a deboronation reaction of 4MPBA on the surfaces, whereas no strong TP peaks were observed on gold nanoparticles. The vibrational bands at 417, 999, 1021, and 1574 cm?1 in the Ag SERS spectra could correspond to the in‐plane aromatic ring modes in TP. X‐ray photoelectron spectroscopy also supported the surface reaction on Ag by referring the B1s peaks at ~193 eV. The ratiometric Raman measurements of the band at 1574 cm?1, with respect to that at 1587 cm?1, revealed fructose and glucose quantification in the concentration range of 1–10 mm . We did not identify such changes for mannose, sucrose, and sialic acid. The SERS peaks of 4MPBA on roughened Ag plates also exhibited TP bands to show the time‐dependent spectral change. Our findings indicate that the deboronation of 4MPBA and conjugation with fructose and glucose may be facilitated efficiently on silver surfaces for their quantification. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we report multiplex SERS based VOCs detection with a leaning nano-pillar substrate. The VOCs analyte molecules adsorbed at the tips of the nano-pillars produced SERS signal due to the field enhancement occurring at the localized surface plasmon hot spots between adjacent leaning nano-pillars. In this experiment, detections of acetone and ethanol vapor at different concentrations were demonstrated. The detection limits were found to be 0.0017 ng and 0.0037 ng for ethanol and acetone vapor molecules respectively. Our approach is a non-labeling method such that it does not require the incorporation of any chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination of acetone and ethanol vapor was also successfully demonstrated. The vibrational fingerprints of molecular structures provide specific Raman peaks for different VOCs contents. To the best of our knowledge, this is the first multiplex VOCs detection using SERS. We believe that this work may lead to a portable device for multiplex, specific and highly sensitive detection of complex VOCs samples that can find potential applications in exhaled breath analysis, hazardous gas analysis, homeland security and environmental monitoring.  相似文献   

15.
黄洁  姚建林  顾仁敖 《化学学报》2007,65(22):2505-2509
采用自组装技术在硅基底上进行金银纳米粒子的混合组装, 通过控制组装溶液中金银溶胶的体积比而控制基底上金银纳米粒子的密度. SEM结果显示金银呈亚单层均匀分布, 以吡啶为探针分子, 在不同波长的激发光下研究了纯金、银以及混合组装时的SERS效应. 利用金银在不同激发线下增强效应的不同以及探针分子吸附在金银纳米粒子表面主要谱峰相对强度差别的特点, 通过一系列校正以及差谱方法研究了金银共存时SERS效应的变化, 并分离出混合体系中金的增强行为, 结果表明在金银同时组装时吡啶的SERS谱峰特征主要表现为银纳米粒子的行为, 分离出的金SERS光谱特征接近银的行为, 说明金银纳米粒子之间产生了一定的耦合作用.  相似文献   

16.
本文发展了一种基于Ag纳米粒子(AgNPs)修饰的局域表面等离激元共振(LSPR)光纤探针,作为等离激元催化反应基底同时原位检测表面增强拉曼光谱(SERS)信号,实现反应与检测一体化。本文使用(3-氨基丙基)三甲氧基硅烷(APTMS)分子将AgNPs组装到光纤探针表面。通过调控自组装时间,可形成AgNPs均匀分布的探针。以对巯基苯胺(PATP)作为反应的模型分子,获得了较好的等离激元催化及信号检测效果。在相同光源条件下,从光纤内部激发收集所得产物的SERS信号强度为外部激发收集的12.8倍,表明内激发收集方式在反应及信号检测方面具有优势;在一定浓度范围(10~(-4)–10~(-8)mol·L~(-1))内可用该光纤探针对PATP溶液进行定量分析;运用该光纤探针开展了等离激元催化PATP分子偶联反应的原位动力学研究。该LSPR光纤探针具有较高灵敏度,对样品损伤小,可在多场合下实现原位检测,且制备简便、成本较低。还有望结合近场扫描光学显微技术进一步对样品表面进行微区等离激元催化反应及检测并得到反应的二维分布图。  相似文献   

17.
Palladium is an important catalytic metal, and it is desirable to develop a surface-enhanced Raman scattering (SERS) technique to investigate the reagent and product species adsorbed on its surface. Unfortunately, Pt-group metals, e.g., Pt and Pd, have been commonly considered as non- or weak-SERS-active substrates. In this work, Ag and Pd thin films were deposited very efficiently and evenly onto the surface of glass substrates by using only corresponding metal nitrate salts (AgNO3 and Pd(NO3)2) with butylamine in ethanolic solutions. In this process, pure ethanol was used for Ag deposition, while an ethanol–water (8:2) mixture was used for Pd deposition. The as-prepared Ag and Pd films exhibited SERS activity over a large area. The surface-induced photoconversion capabilities of these Ag and Pd films were then tested on 4-nitrobenzenethiol by means of SERS. It was found that at least under visible laser irradiation, the surface-catalyzed photoreaction occurs more readily on a Ag film than on a Pd film for the conversion of 4-nitrobenzenethiol to 4-aminobenzenethiol, even though Pd is known to be an important transition metal with high catalytic activity.  相似文献   

18.
Kim K  Kim KL  Shin KS 《The Analyst》2012,137(16):3836-3840
In this work, we have devised a selective nitrite-ion detection method based on the surface-enhanced Raman scattering (SERS) of 4-aminobenzenethiol (4-ABT) on Au. This is possible because, firstly, SERS is a very surface-sensitive technique with monolayer detection capability, and secondly, the amine group of 4-ABT reacts readily with nitrites in acidic media, forming a diazonium group, which can subsequently form an azo bond by reacting with a variety of benzene derivatives. From the peak intensity of the diazonium group, the presence of nitrite ions above 20 μM can be identified readily. From the peak intensity of the azo moiety alone, it is even possible to detect nitrite ions at concentrations as low as 5 μM, without interference from other anions. This work clearly illustrates the usefulness of SERS in environmental science research.  相似文献   

19.
Time-resolved surface-enhanced Raman scattering (SERS) was applied to study the response of Raman bands from 4-cyanopyridine (PyCN) adsorbed on a Ag electrode to variation of the potential; the temporal resolution was 0.1 s. The response of the SERS signals of PyCN was instantaneous to the oxidation potential of Ag electrode. However, delay of the SERS signals was observed while AgCl was reducing. The decay and growth of the SERS bands look place within 1 s in the cases of desorption and adsorption of PyCN on the electrode. It took much longer for PyCN to alter from one adsorption geometry to another on the electrode.  相似文献   

20.
In this paper,we studied the pH dependent plasmon-driven surface-catalysis(PDSC) reactions of p,p’-dimercaptoazobenzene(DMAB) produced from para-aminothiophenol(PATP) and 4-nitrobenzenethiol(4NBT) both theoretically and experimentally.The surface enhanced Raman spectrum(SERS) of DMAB produced from PATP and 4NBT on Ag films in solutions with various pH values has been measured.The simulation and experimental results indicated that the pH dependence of PATP appeared in acidic environment and came from the amino group NH2.Furthermore,the ratio of intensity of Raman peak caused by PATP and DMAB indicated that this acidic sensor had higher pH sensitivity when it was excited by photons of higher energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号