共查询到20条相似文献,搜索用时 15 毫秒
1.
MA Yan-Liang OUYANG Xiao-Ping ZHANG Jing-Wen ZHANG Zhong-Bing PAN Hong-Bo CHEN Liang LIU Lin-Yue 《中国物理C(英文版)》2010,34(3)
In this paper, properties on pulsed radiation detections of ZnO:Ga crystal grew by a magnetron sputtering method were studied. The time response to pulsed laser,pulsed hard X rays and single α particles, the energy response to pulsed hard X ray, the scintillation efficiency to γ rays, the response to pulsed proton, and the relations of the light intensity varied with the proton energy were measured and analyzed in detail. Results show that the ZnO:Ga crystal has potential applications in the regime of pulse radiation detection . 相似文献
2.
3.
Rosana M. Turtos Stefan Gundacker Marco T. Lucchini Lenka Procházková Václav Čuba Hana Burešová Jan Mrázek Martin Nikl Paul Lecoq Etiennette Auffray 《固体物理学:研究快报》2016,10(11):843-847
The implementation of nanocrystal‐based composite scintillators as a new generation of ultrafast particle detectors is explored using ZnO:Ga nanopowder. Samples are characterized with a spectral‐time resolved photon counting system and pulsed X‐rays, followed by coincidence time resolution (CTR) measurements under 511 keV gamma excitation. Results are comparable to CTR values obtained using bulk inorganic scintillators. Bringing the ZnO:Ga nanocrystal's timing performance to radiation detectors could pave the research path towards sub‐20 ps time resolution as shown in this contribution. However, an efficiency boost when placing nanopowders in a transparent host constitutes the main challenge in order to benefit from sub‐nanosecond recombination times. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
4.
N. R. Aghamalyan R. K. Hovsepyan 《Journal of Contemporary Physics (Armenian Academy of Sciences)》2008,43(2):91-96
Influence of UV radiation on photoelectric properties of ZnO:Ga and ZnO:Li films prepared by the electron-beam evaporation method was investigated. The photoconductivity was measured, using metal-semiconductor-metal planar structures where metallic aluminum was used as ohmic electrodes. The kinetics of rise and decay of the photoconductivity in these structures was studied. The change of photoconductivity under the action of UV radiation is considered as a result of the photoexcitation-relaxation into the conduction band and photochemical processes of absorption-desorption of oxygen at the film surface. The influence of a MgF2 protective layer deposited on ZnO:Ga and ZnO:Li films was studied. Measurements of the spatial distribution of the potential between the anode and cathode for determination of the homogeneity of conductivity in the investigated planar structures were performed by the moving probe method. 相似文献
5.
Film ZnO:In crystal is a good candidate for a scintillation recoil proton neutron detection system and the response of ZnO:In to protons is a crucial point. The energy response of ZnO:In to mono-energetic protons in the range of 10 keV-8 MeV was measured. The experiment was carried out in current mode, and Au foil scattering was employed, where the forward scattering protons were used for exciting the sample, and the backward scattering protons were used for monitoring the beam intensity. According to the result, the yield of light non-linearly depends on proton energy, and drops significantly when proton energy is low. The scintillation efficiency as a function of proton energy was obtained, which is very useful for researching the scintillation recoil proton neutron detection system. 相似文献
6.
Transparent conductive ZnO:Ga thin films were deposited on Corning 1737 glass substrate by pulsed direct current (DC) magnetron sputtering. The effects of process parameters, namely pulse frequency and film thickness on the structural and optoelectronic properties of ZnO:Ga thin films are evaluated. It shows that highly c-axis (0 0 2) oriented polycrystalline films with good visible transparency and electrical conductivity were prepared at a pulsed frequency of 10 kHz. Increasing the film thickness also enlarged the grain size and carrier mobility which will subsequently lead to the decrease in resistivity. In summary, ZnO:Ga thin film with the lowest electrical resistivity of 2.01 × 10−4 Ω cm was obtained at a pulse frequency of 10 kHz with 500 nm in thickness. The surface RMS (root mean square) roughness of the film is 2.9 nm with visible transmittance around 86% and optical band gap of 3.83 eV. 相似文献
7.
V. Khranovskyy U. Grossner V. Lazorenko G. Lashkarev B.G. Svensson R. Yakimova 《Superlattices and Microstructures》2007,42(1-6):379
Due to a constant increase in demands for transparent electronic devices the search for alternative transparent conducting oxides (TCO) is a major field of research now. New materials should be low-cost and have comparable or better optical and electrical characteristics in comparison to ITO. The use of n-type ZnO was proposed many years ago, but until now the best n-type dopant and its optimal concentration is still under discussion. Ga was proposed as the best dopant for ZnO due to similar atomic radius of Ga3+ compared to Zn2+ and its lower reactivity with oxygen. The resistivity ρ of ZnO:Ga/Si (100) films grown by PEMOCVD was found to be 3×10−2 Ω cm. Rapid thermal annealing (RTA) was applied to increase the conductivity of ZnO:Ga (1 wt%) films and the optimal regime was determined to be 800 C in oxygen media for 35 s. The resistivity ratio before and after the annealing and the corresponding surface morphologies were investigated. The resistivity reduction () was observed after annealing at optimal regime and the final film resistivity was approximately ≈4×10−4 Ω cm, due to effective Ga dopant activation. The route mean square roughness (Rq) of the films was found to decrease with increasing annealing time and the grain size has been found to increase slightly for all annealed samples. These results allow us to prove that highly conductive ZnO films can be obtained by simple post-growth RTA in oxygen using only 1% of Ga precursor in the precursor mix. 相似文献
8.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The structural, electrical, and optical properties of ZnO:Ga films were investigated in a wide temperature range from room temperature up to 400 °C. The crystallinity and surface morphology of the films are strongly dependent on the growth temperatures, which in turn exert an influence on the electrical and optical properties of the ZnO:Ga films. The film deposited at 350 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.4 × 10−4 Ω cm. More importantly, the low-resistance and high-transmittance ZnO:Ga films were also obtained at a low temperature of 150 °C by changing the sputtering powers, having acceptable properties for application as transparent conductive electrodes in LCDs and solar cells. 相似文献
9.
采用密度泛函理论下的第一性原理平面波赝势方法,研究了掺Ga对纤锌矿ZnO电子态密度和光学性质的影响.从晶体配位场理论分析了掺Ga前后ZnO的成键情况及态密度的变化.计算得到掺Ga后电子浓度为2.42×1021 cm-3,ZnO的载流子浓度提高了104倍.比较分析掺Ga前后ZnO的介电函数、复折射率、吸收光谱和反射光谱可得,ZnO光吸收边向高能端移动,光学带隙增大.在可见光区,ZnO光吸收系数与反射率减小,光透过率显著提高,使ZnO:Ga成为
关键词:
密度泛函理论
态密度
光学性质
ZnO:Ga 相似文献
10.
ZnO∶Ga(GZO)透明电极沉积在p-GaN表面,用作透明电流扩展层。直接沉积在p-GaN上的p-GaN/GZO存在较大的势垒,容易形成肖特基接触,而良好的欧姆接触对功率LED器件至关重要。为了降低接触势垒,采用盐酸和氢氧化钠溶液对GaN表面进行去氧化层处理,并对p-GaN/GZO进行退火处理,研究表面处理和退火对p-GaN/GZO接触特性的影响。研究表明:碱性溶液处理有利于降低接触势垒;退火处理后,接触势垒略有增加。 相似文献
11.
12.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法, 建立了纯的和四种不同Ga掺杂量的ZnO超胞模型, 分别对模型进行了几何结构优化、能带结构分布、态密度分布和吸收光谱的计算. 结果表明, 在本文限定的Ga掺杂量2.08 at%–6.25 at%的范围内, 随着Ga掺杂量的增加, 掺杂后的ZnO体系体积变化不是很大, 但是, 掺杂体系ZnO的能量增加, 掺杂体系变得越来越不稳定, 同时, 掺杂体系ZnO的Burstein-Moss 效应越显著, 最小光学带隙变得越宽, 吸收带边越向高能方向移动. 计算结果和实验结果相一致.
关键词:
Ga高掺杂ZnO
电子结构
吸收光谱
第一性原理 相似文献
13.
14.
15.
Transparent conducting ZnMgO:Ga films were deposited on flexible PET substrates by pulsed laser deposition (PLD). Effects of deposition pressure and time on the structural, electrical and optical properties of ZnMgO:Ga films were investigated. The films showed a low resistivity about 7.68 × 10−4 Ω cm when deposited at the pressure of 0.03 Pa for 40 min. All the films exhibited a high transmittance over 80% in the visible and near-ultraviolet region. The band gap of as-grown films was about 3.50 eV. 相似文献
16.
17.
为了测量脉冲时间宽度小于20 ns时的射线时间分辨图像,发展了新型无机闪烁体Yb:YAG,并实验测量了晶体的发光衰减时间、X射线激发发光光谱、相对发光效率和空间分辨等性能,研究了Yb:YAG晶体的发光性能。实验表明,Yb:YAG发光有三种衰减成分,快成分衰减常数为1.2 ns,慢成分衰减常数与射线种类有关;X射线激发发光光谱在250~800 nm范围,有三个发光峰,分别为320,380和500 nm,且320 nm处强度最大;相对发光效率为1900 ph/MeV;使用钨分辨卡测得Yb: YAG空间分辨能力为2 lp/m,使用刀口法测得空间调制传递函数为0.5时的频率为0.7 lp/mm。结果说明Yb:YAG晶体性能能够满足所需测量要求。 相似文献
18.
采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,在相同环境条件下建立了浓度不同的由Ga原子取代Zn原子的Zn1-xGaxO模型.对低温高掺杂Ga原子的Zn1-xGaxO半导体的能带结构、态密度和吸收光谱进行了计算.结果表明:Ga原子浓度越大,进入导带的相对电子数越多,但是电子迁移率反而减小.通过对掺杂和未掺杂ZnO的电导率以及最小间隙带宽度分别进行了比较
关键词:
ZnO高掺杂Ga
电导率
红移
第一性原理 相似文献
19.
Bao Y. Man Hong Z. Xi Chuan S. Chen Mei Liu Jing Wei 《Central European Journal of Physics》2008,6(3):643-647
Using a pulsed laser deposition (PLD) process on a ZnO target in an oxygen atmosphere, thin films of this material have been
deposited on Si(111) substrates. An Nd: YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influences
of the deposition temperature, laser energy, annealing temperature and focus lens position on the crystallinity of ZnO films
were analyzed by X-ray diffraction. The results show that the ZnO thin films obtained at the deposition temperature of 400°C
and the laser energy of 250 mJ have the best crystalline quality in our experimental conditions. The ZnO thin films fabricated
at substrate temperature 400°C were annealed at the temperatures from 400°C to 800°C in an atmosphere of N2. The results show that crystalline quality has been improved by annealing, the optimum temperature being 600°C. The position
of the focusing lens has a strong influence on pulsed laser deposition of the ZnO thin films and the optimum position is 59.5
cm from the target surface for optics with a focal length of 70 cm.
相似文献
20.
Szu-Ko WangTing-Chun Lin Sheng-Rui Jian Jenh-Yih JuangJason S.-C. Jang Jiun-Yi Tseng 《Applied Surface Science》2011,258(3):1261-1266
In this study, the effects of post-annealing on the structure, surface morphology and nanomechanical properties of ZnO thin films doped with a nominal concentration of 3 at.% Ga (ZnO:Ga) are investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) and nanoindentation techniques. The ZnO:Ga thin films were deposited on the glass substrates at room temperature by radio frequency magnetron sputtering. Results revealed that the as-deposited ZnO:Ga thin films were polycrystalline albeit the low deposition temperature. Post-annealing carried out at 300, 400 and 500 °C, respectively, has resulted in progressive increase in both the average grain size and the surface roughness of the ZnO:Ga thin film, in addition to the improved thin films crystallinity. Moreover, the hardness and Young's modulus of ZnO:Ga thin films are measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The hardness and Young's modulus of ZnO:Ga thin films increased as the annealing temperature increased from 300 to 500 °C, with the best results being obtained at 500 °C. 相似文献