共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the capillary forces arising from charged colloidal particles trapped at an oil-water interface. Since it is quadratic in the electric field, the electric stress acting on the interface cannot be written as the superposition of one-particle terms. Indeed, we find that the interfacial pressure is dominated by two-particle terms, which induce capillary forces involving one, two, three, or four particles. The dominant interaction is attractive and varies with the inverse cube of the particle distance. 相似文献
2.
Effect of charged colloidal particles on adsorption of surfactants at oil-water interface 总被引:1,自引:0,他引:1
Wang W Zhou Z Nandakumar K Xu Z Masliyah JH 《Journal of colloid and interface science》2004,274(2):625-630
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition. 相似文献
3.
Using molecular dynamics simulations, we calculate the net force on a colloidal particle trapped by an optical tweezer and confined within a particle monolayer which is in motion relative to the trapped particle. The calculations are compared with recent experimental data on polystyrene particles located at an oil-water interface. Good agreement between theory and experiment is obtained over the investigated range of lattice constants for an interaction mechanism between the polystyrene particles which is dominated by an effective dipole-dipole potential. The assumed interaction mechanism is consistent with the formation of surface charge dipoles at the particle-oil interface due to the dissociaton of the hydrophilic sulfate headgroups at the surface of the polystyrene particles. A possible physical mechanism for the formation of the surface charge dipoles, involving a diffuse cloud of fully hydrated counterions, is described, and the fraction of surface groups contributing to the formation of surface charge dipoles is estimated to be of the order of 10(-1) for the present system. 相似文献
4.
Control over colloidal aggregation in monolayers of latex particles at the oil-water interface 总被引:1,自引:0,他引:1
Reynaert S Moldenaers P Vermant J 《Langmuir : the ACS journal of surfaces and colloids》2006,22(11):4936-4945
The controlled generation of 2D aggregate networks is studied experimentally using micrometer-sized polystyrene latex particles attached to the oil-water interface. Starting from an initially crystalline monolayer, appropriate combinations of carefully added electrolyte and surfactant enable control over both the fractal dimension and the kinetics of aggregation. Remarkably, the colloidal crystals formed upon first spreading remain stable, even for days, when substantial amounts of electrolyte are added to the aqueous phase. Pressure-area isotherms reveal a slow time evolution of the electrostatic dipole-dipole interaction. When the electrostatic interaction has been sufficiently weakened, aggregation proceeds in well-defined, reproducible manner. The aggregation process is analyzed using quantitative video microscopy. The evolution of the cluster size distribution and its moments is characterized, and static and dynamic scaling exponents are derived to identify the nature of the aggregation process. In the range of concentrations studied here, the kinetics all agree with a "fast", diffusion-limited cluster type of aggregation. However, the fractal dimension strongly depends on the composition of the aqueous subphase. Rather dense structures are found when only electrolyte is used, whereas more open structures are obtained when even small amounts of surfactant are added. It is suggested that this structural dependency is related to the effect of surfactant on the contact angle and its consequences for the anisotropic nature of the capillary interactions. 相似文献
5.
Cheung DL 《Langmuir : the ACS journal of surfaces and colloids》2012,28(23):8730-8736
Hydrophobins are small, amphiphilic proteins expressed by strains of filamentous fungi. They fulfill a number of biological functions, often related to adsorption at hydrophobic interfaces, and have been investigated for a number of applications in materials science and biotechnology. In order to understand the biological function and applications of these proteins, a microscopic picture of the adsorption of these proteins at interfaces is needed. Using molecular dynamics simulations with a chemically detailed coarse-grained potential, the behavior of typical hydrophobins at the water-octane interface is studied. Calculation of the interfacial adsorption strengths indicates that the adsorption is essentially irreversible, with adsorption strengths of the order of 100 k(B)T (comparable to values determined for synthetic nanoparticles but significantly larger than small molecule surfactants and biomolecules). The protein structure at the interface is unchanged at the interface, which is consistent with the biological function of these proteins. Comparison of native proteins with pseudoproteins that consist of uniform particles shows that the surface structure of these proteins has a large effect on the interfacial adsorption strengths, as does the flexibility of the protein. 相似文献
6.
Du K Liddle JA Berglund AJ 《Langmuir : the ACS journal of surfaces and colloids》2012,28(25):9181-9188
Single-particle tracking with real-time feedback control can be used to study three-dimensional nanoparticle transport dynamics. We apply the method to study the behavior of adsorbed nanoparticles at a silicone oil-water interface in a microemulsion system over a range of particles sizes from 24 nm to 2000 nm. The diffusion coefficient of large particles (>200 nm) scales inversely with particle size, while smaller particles exhibit an unexpected increase in drag force at the interface. The technique can be applied in the future to study three-dimensional dynamics in a range of systems, including complex fluids, gels, biological cells, and geological media. 相似文献
7.
Rodríguez Patino JM Navarro García JM Rodríguez Niño MR 《Colloids and surfaces. B, Biointerfaces》2001,21(1-3):207-216
The distribution of proteins and lipids in food emulsions and foams is determined by competitive and cooperative adsorption between the two types of emulsifiers at the fluid-fluid interfaces, and by the nature of protein-lipid interactions, both at the interface and in the bulk phase. The existence of protein-lipid interactions can have a pronounced impact on the surface rheological properties of these systems. Therefore, these results are of practical importance for food emulsion formulation, texture, and stability. In this study, the existence of protein-lipid interactions at the interface was determined by surface dynamic properties (interfacial tension and surface dilational modulus). Systematic experimental data on surface dynamic properties, as a function of time and at long-term adsorption, for protein (whey protein isolate (WPI)), lipids (monoglycerides), and protein-lipid mixed films at the oil-water interface were measured in an automated drop tensiometer. The dynamic behaviour of protein+lipid mixed films depends on the adsorption time, the lipid and the protein/lipid ratio in a rather complicated manner. The protein determined the interfacial characteristics of the mixed film as the protein at WPI>/=10(-2)% wt/wt saturated the film, no matter what the concentration of the lipid. However, there exists a competitive or cooperative adsorption of the emulsifier (WPI and monoglycerides), as the concentration of protein in the bulk phase is far lower than that for interfacial saturation. 相似文献
8.
Spiecker PM Kilpatrick PK 《Langmuir : the ACS journal of surfaces and colloids》2004,20(10):4022-4032
A biconical bob interfacial shear rheometer was used to study the mechanical properties of asphaltenic films adsorbed at the oil-water interface. Solutions of asphaltenes isolated from four crude oils were dissolved in a model oil of heptane and toluene and allowed to adsorb and age in contact with water. Film elasticity (G') values were measured over a period of several days, and yield stresses and film masses were determined at the end of testing. The degree of film consolidation was determined from ratios of G'/film mass and yield stress/G'. Asphaltenes with higher concentrations of heavy metals (Ni, 330-360 ppm; V, 950-1000 ppm), lower aromaticity (H/C, 1.24-1.29), and higher polarity (N, 1.87-1.99) formed films of high elasticity, yield stress, and consolidation. Rapid adsorption kinetics and G' increases were seen when asphaltenes were near their solubility limit in heptane-toluene mixtures (approximately 50% (v/v) toluene). In solvents of greater aromaticity, adsorption kinetics and film masses were reduced at comparable aging times. Poor film forming asphaltenes had yield stress/G' values ((1.01-1.21) x 10(-2)) more than 4-fold lower than those of good film forming asphaltenes. n-heptane asphaltenes fractionated by filtering solutions prepared at low aromaticity (approximately 40% toluene in mixtures of heptane and toluene) possessed higher concentrations of heavy metals and nitrogen and higher aromaticity. The less soluble fractions of good film forming asphaltenes exhibited enhanced adsorption kinetics and higher G' and yield stress values in pure toluene. Replacing the asphaltene solutions with neat heptane-toluene highlighted the ability of films to consolidate and become more elastic over several hours. Adding resins in solution to a partially consolidated film caused a rapid reduction in elasticity followed by gradual but modest consolidation. This study is among the first to directly relate asphaltene chemistry to adsorption kinetics, adsorbed film mechanical properties, and consolidation kinetics. 相似文献
9.
10.
We calculate the optical trapping forces exerted by a single laser beam strongly focused on a dielectric sphere located at a two-dimensional (2D) oil-water interface. The calculated lateral trapping forces, based on the geometrical optics approximation (GOA), agree with experimental measurements of the trapping force. Importantly, the calculations verify that the radiation force exerted on particles perpendicular to the interface is not sufficient to induce capillary interactions between particle pairs, which could be mistaken for particle-particle interactions. Finally, we find that the trapping forces depend on the three-phase contact angle of the particle at the interface. 相似文献
11.
《Bioelectrochemistry and bioenergetics (Lausanne, Switzerland)》1995,36(1):53-56
The hydrolytic activity of phospholipase A2 (PLA2) against the dipalmitoylphosphatidylcholine monolayer formed at the nitrobenzene-water interface has been studied under the control of the potential drop across the monolayer. The activities of both porcine pancreatic and Naja naja PLA2S was the highest when the potential of the nitrobenzene phase was 60 mV negative with respect to that of the aqueous phase. The local electrostatic interaction between the positively charged domain, the recognition site, of PLA2 molecules with the negatively charged substrate side of the interface, where zwitterionic substrate molecules and negatively charged product molecules were adsorbed, is an important factor in determining the interfacial enzymatic activity. Irreversible adsorption of PLA2 molecules on the substrate monolayer is confirmed, giving unequivocal evidence for the scooting mode of hydrolysis by PLA2. 相似文献
12.
Garbin V Crocker JC Stebe KJ 《Langmuir : the ACS journal of surfaces and colloids》2012,28(3):1663-1667
While nanoparticle adsorption to fluid interfaces has been studied from a fundamental standpoint and exploited in application, the reverse process, that is, desorption and disassembly, remains relatively unexplored. Here we demonstrate the forced desorption of gold nanoparticles capped with amphiphilic ligands from an oil-water interface. A monolayer of nanoparticles is allowed to spontaneously form by adsorption from an aqueous suspension onto a drop of oil and is subsequently compressed by decreasing the drop volume. The surface pressure is monitored by pendant drop tensiometry throughout the process. Upon compression, the nanoparticles are mechanically forced out of the interface into the aqueous phase. An optical method is developed to measure the nanoparticle area density in situ. We show that desorption occurs at a coverage that corresponds to close packing of the ligand-capped particles, suggesting that ligand-induced repulsion plays a crucial role in this process. 相似文献
13.
Ashbaugh HS Pratt LR Paulaitis ME Clohecy J Beck TL 《Journal of the American Chemical Society》2005,127(9):2808-2809
We simulated the interface between liquid water and a stationary phase of tethered n-C18 alkyl chains at a thermodynamic state of low pressure and water vapor-liquid coexistence. The interfacial water (oxygen atom) density profile so obtained is compared with a precisely defined proximal density of water molecules (oxygen atoms) conditional on the alkyl chain configurations. Though the conventional interfacial density profile takes a traditional monotonic form, the proximal radial distribution of oxygen atoms around a specific methyl (methylene) group closely resembles that for a solitary methane solute in liquid water. Moreover, this proximal radial distribution function is sufficient to accurately reconstruct the water oxygen density profile of the oil-water interface. These observations provide an alternative interpretation to collective drying or vaporization interpretations of commonly observed oil-water interfacial profiles for which water penetration into the interfacial region plays a role. 相似文献
14.
Oscillatory potential and difference interfacial tension variation can be observed at an oil-water interface containing charge species when the conditions are such that hydrodynamic instabilities can occur. We propose a mechanism based on an experimental study accountable for the relaxation-type oscillations observed. It involves the coupling of a chemical reaction occurring in the bulk in the vicinity of the interface with an interfacial transfer by diffusion and adsorption-desorption processes. 相似文献
15.
Danov KD Kralchevsky PA Naydenov BN Brenn G 《Journal of colloid and interface science》2005,287(1):121-134
A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap engenders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be formally treated as positive and negative "capillary charges," which form "capillary multipoles." Here, we derive theoretical expressions for the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is typically much greater than the thermal energy kT. As a consequence, a monolayer from capillary multipoles exhibits considerable shear elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheological properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-assembly of microscopic particles. 相似文献
16.
The effect of surfactants' type and concentration on the interfacial tension and contact angle in the presence of hydrophilic silica particles was investigated. Silica particles have been shown to have an antagonistic effect on interfacial tension and contact angle in the presence of both W/O and O/W surfactants. Silica particles, combined with W/O surfactant, have no effect on interfacial tension, which is only dictated by the surfactant concentration, while they strongly affect interfacial tension when combined with O/W surfactants. At low O/W surfactant, both particles and surfactant are adsorbed at the interface, modifying the interface structure. At higher concentration, interfacial tension is only dictated by the surfactant. By increasing the surfactant concentration, the contact angle that a drop of aqueous phase assumes on a glass substrate placed in oil media decreases or increases depending on whether the surfactant is of W/O or O/W type, respectively. This is due to the modification of the wettability of the glass by the oil or water induced by the surfactants. Regardless of the surfactant's type, the contact angle profile was dictated by both particles and surfactant at low surfactant concentration, whereas it is dictated by the surfactant only at high concentration. 相似文献
17.
Kunieda M Nakaoka K Liang Y Miranda CR Ueda A Takahashi S Okabe H Matsuoka T 《Journal of the American Chemical Society》2010,132(51):18281-18286
It is well-known that the amphiphilic solutes are surface-active and can accumulate at the oil-water interface. Here, we have investigated the water and a light-oil model interface by using molecular dynamic simulations. It was found that aromatics concentrated in the interfacial region, whereas the other hydrocarbons were uniformly distributed throughout the oil phase. Similar to previous studies, such concentrations were not observed at pure aromatics-water interfaces. We show that the self-accumulation of aromatics at the oil-water interface is driven by differences in the interfacial tension, which is lower for aromatics-water than between the others. The weak hydrogen bonding between the aromatic rings and the water protons provides the mechanism for lowering the interfacial tension. 相似文献
18.
Peggy M. Dunlap Wilson Carl F. Brandner 《Journal of colloid and interface science》1977,60(3):473-479
Ultra-low values of the tension at an oil-aqueous electrolyte solution interface can be developed by the addition of water-soluble surfactants of the petroleum sulfonate type. Interfacial tensions in the range of 10−3 dyne/cm or lower are readily achieved with surfactant concentrations of the order of 0.1 wt%. For a given oil and aqueous solution, the minimum interfacial tension resulting from the addition of a petroleum sulfonate depends markedly on the average equivalent weight of the sulfonate. Sulfonates having average equivalent weights higher and lower than a previously determined optimum weight, when mixed so as to yield this particular average weight, will also produce ultra-low interfacial tensions. For a given oil, additional control of this unusual type of interfacial activity is accomplished by adjustment of the electrolyte concentration of the aqueous phase. 相似文献
19.
Hanczyc MM Toyota T Ikegami T Packard N Sugawara T 《Journal of the American Chemical Society》2007,129(30):9386-9391
Fatty acids have been investigated as boundary structures to construct artificial cells due to their dynamic properties and phase transitions. Here we have explored the possibility that fatty acid systems also demonstrate movement. An oil phase was loaded with a fatty acid anhydride precursor and introduced to an aqueous fatty acid micelle solution. The oil droplets showed autonomous, sustained movement through the aqueous media. Internal convection created a positive feedback loop, and the movement of the oil droplet was sustained as convection drove fresh precursor to the surface to become hydrolyzed. As the system progressed, more surfactant was produced and some of the oil droplets transformed into supramolecular aggregates resembling multilamellar vesicles. The oil droplets also moved directionally within chemical gradients and exhibited a type of chemotaxis. 相似文献