首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectroscopic evidence is presented for the formation of a carbinolamine interchain cross-link in 5'-CpG-3' sequences, arising from the acrolein adduct gamma-OH-PdG. This may be important in understanding biological processing of acrolein-induced DNA damage in CpG sequences.  相似文献   

2.
The interstrand N2,N2-dG DNA cross-linking chemistry of the acrolein-derived gamma-OH-1,N2-propanodeoxyguanosine (gamma-OH-PdG) adduct in the 5'-CpG-3' sequence was monitored within a dodecamer duplex by NMR spectroscopy, in situ, using a series of site-specific 13C- and 15N-edited experiments. At equilibrium 40% of the DNA was cross-linked, with the carbinolamine form of the cross-link predominating. The cross-link existed in equilibrium with the non-crosslinked N2-(3-oxo-propyl)-dG aldehyde and its geminal diol hydrate. The ratio of aldehyde/diol increased at higher temperatures. The 1,N2-dG cyclic adduct was not detected. Molecular modeling suggested that the carbinolamine linkage should be capable of maintaining Watson-Crick hydrogen bonding at both of the tandem C x G base pairs. In contrast, dehydration of the carbinolamine cross-link to an imine (Schiff base) cross-link, or cyclization of the latter to form a pyrimidopurinone cross-link, was predicted to require disruption of Watson-Crick hydrogen bonding at one or both of the tandem cross-linked C x G base pairs. When the gamma-OH-PdG adduct contained within the 5'-CpG-3' sequence was instead annealed into duplex DNA opposite T, a mixture of the 1,N2-dG cyclic adduct, the aldehyde, and the diol, but no cross-link, was observed. With this mismatched duplex, reaction with the tetrapeptide KWKK formed DNA-peptide cross-links efficiently. When annealed opposite dA, gamma-OH-PdG remained as the 1,N2-dG cyclic adduct although transient epimerization was detected by trapping with the peptide KWKK. The results provide a rationale for the stability of interstrand cross-links formed by acrolein and perhaps other alpha,beta-unsaturated aldehydes. These sequence-specific carbinolamine cross-links are anticipated to interfere with DNA replication and contribute to acrolein-mediated genotoxicity.  相似文献   

3.
[reaction: see text] The reaction of N,N-dialkylhydrazine/2LiCl adducts with aryl bromides in the presence of Pd(2)(dba)(3) as the palladium source, Xantphos or X-phos as the ligands, toluene as the solvent, and NaOBu-t as the base provides an efficient route to N,N-dialkyl-N'-arylhydrazines. Best results were obtained by using N,N-dialkylhydrazine/2LiCl adducts prepared in situ, omitting their isolation.  相似文献   

4.
[reaction: see text] A gas mixture of NO and O(2) was bubbled into 2'-deoxyguanosine solution at neutral pH and 37 degrees C. A novel nitrated nucleoside was generated in the reaction mixture in addition to 8-nitroguanine, 8-nitroxanthine, 2'-deoxyxanthosine, xanthine, and guanine. The novel nucleoside was identified as N(2)-nitro-2'-deoxyguanosine by spectrometric data.  相似文献   

5.
The electrochemical and chemical oxidation of a series of C8-arylamine adducts of 2'-deoxyguanosine has been examined. The oxidations were found to be reversible by cyclic and square-wave voltammetry in both aqueous buffer and aprotic organic solvent. The mechanism of the oxidation in protic media was either one- or two-electron, depending on the aryl group. The chemical oxidation resulted in guanidinohydantoin and spiroiminodihydantoin rearrangement products similar to those observed for 8-oxo-7,8-dihydro-2'-deoxyguanosine.  相似文献   

6.
The 2'-hydroxyl groups within RNA contribute in essential ways to RNA structure and function. Previously, we designed an atomic mutation cycle (AMC) that uses ribonucleoside analogues bearing different C-2'-substituents, including -OCH(3), -NH(2), -NHMe, and -NMe(2), to identify hydroxyl groups within RNA that donate functionally significant hydrogen bonds. To enable AMC analysis of the nucleophilic guanosine cofactor in the Tetrahymena ribozyme reaction and at other guanosines whose 2'-hydroxyl groups impart critical functional contributions, we describe here the syntheses of 2'-methylamino-2'-deoxyguanosine (G(NHMe)) and 2'-N,N-dimethylamino-2'-deoxyguanosine (G(NMe(2))) and their corresponding phosphoramidites. The key step in obtaining the nucleosides involved S(N)2 displacement of 2'-β-triflate from an appropriate guanosine derivative by methylamine or dimethylamine. We readily obtained the G(NMe(2)) phosphoramidite and incorporated it into RNA. However, the G(NHMe) phosphoramidite posed a significantly greater challenge due to lack of a suitable -2'-NHMe protecting group. After testing several strategies, we established that allyloxycarbonyl (Alloc) provided suitable protection for 2'-N-methylamino group during the phosphoramidite synthesis and the subsequent RNA synthesis. This work enables AMC analysis of guanosine's 2'-hydroxyl group within RNA.  相似文献   

7.
Single-electron oxidation of the carcinogenic hydrocarbon benzo[a]pyrene (BaP) is thought to result in a radical cation intermediate and this species has been proposed to cause alkylation at the nitrogens of the purine nucleobases. Although several different nucleoside adducts have been isolated as arising from this mode of metabolic activation, there are no selective, total syntheses of the stable exocyclic amino group adducts formed by the single-electron oxidation of any hydrocarbon with the purine 2'-deoxynucleosides to date. In this paper we disclose the synthesis of the model adducts N(6)-(1-pyrenyl)-2'-deoxyadenosine and N(2)-(1-pyrenyl)-2'-deoxyguanosine as well as the first synthesis of the carcinogen-linked nucleoside derivatives N(6)-(6-benzo[a]pyrenyl)-2'-deoxyadenosine and N(2)-(6-benzo[a]pyrenyl)-2'-deoxyguanosine via a palladium-mediated C-N bond formation. Two different coupling strategies were attempted: coupling of an aryl bromide with a suitably protected nucleoside and the coupling of an arylamine with a suitable halonucleoside. The former had somewhat limited applicability in that only N(6)-(1-pyrenyl)-2'-deoxyadenosine was prepared by this method; on the other hand, the latter was more general. However, there are noteworthy differences in the amination reactions at the C-6 and C-2 positions. Reactions at the C-6 resulted in the competing formation of a 1:2 amine-nucleoside adduct in addition to the desired monoaryl nucleoside. Such a dimer formation was not observed at the C-2. The C-2 adducts, however, displayed an interesting conformational behavior.  相似文献   

8.
Acetaldehyde is an environmentally widespread genotoxic aldehyde present in tobacco smoke, vehicle exhaust and several food products. Endogenously, acetaldehyde is produced by the metabolic oxidation of ethanol by hepatic NAD-dependent alcohol dehydrogenase and during threonine catabolism. The formation of DNA adducts has been regarded as a critical factor in the mechanisms of acetaldehyde mutagenicity and carcinogenesis. Acetaldehyde reacts with 2'-deoxyguanosine in DNA to form primarily N(2)-ethylidene-2'-deoxyguanosine. The subsequent reaction of N(2)-ethylidenedGuo with another molecule of acetaldehyde gives rise to 1,N(2)-propano-2'-deoxyguanosine (1,N(2)-propanodGuo), an adduct also found as a product of the crotonaldehyde reaction with dGuo. However, adducts resulting from the reaction of more than one molecule of acetaldehyde in vivo are still controversial. In this study, the unequivocal formation of 1,N(2)-propanodGuo by acetaldehyde was assessed in human cells via treatment with [(13)C(2)]-acetaldehyde. Detection of labeled 1,N(2)-propanodGuo was performed by HPLC/MS/MS. Upon acetaldehyde exposure (703 μM), increased levels of both 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdGuo), which is produced from α,β-unsaturated aldehydes formed during the lipid peroxidation process, and 1,N(2)-propanodGuo were observed. The unequivocal formation of 1,N(2)-propanodGuo in cells exposed to this aldehyde can be used to elucidate the mechanisms associated with acetaldehyde exposure and cancer risk.  相似文献   

9.
Methylglyoxal is a highly reactive alpha-ketoaldehyde that is produced endogenously and present in the environment and foods. It can modify DNA and proteins to form advanced glycation end products (AGEs). Emerging evidence has shown that N2-(1-carboxyethyl)-2'-deoxyguanosine (N2-CEdG) is a major marker for AGE-linked DNA adducts. Here, we report, for the first time, the preparation of oligodeoxyribonucleotides (ODNs) containing individual diastereomers of N2-CEdG via a postoligomerization synthesis method, which provided authentic substrates for examining the replication and repair of this lesion. In addition, thermodynamic parameters derived from melting temperature data revealed that the two diastereomers of N2-CEdG destabilized significantly the double helix as represented by a 4 kcal/mol increase in Gibbs free energy for duplex formation at 25 degrees C. Primer extension assay results demonstrated that both diastereomers of N2-CEdG could block considerably the replication synthesis mediated by the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I. Strikingly, the polymerase incorporated incorrect nucleotides, dGMP and dAMP, opposite the lesion more preferentially than the correct nucleotide, dCMP.  相似文献   

10.
[reaction: see text] C8-Amine and acetylamine adducts of 2'-deoxyguanosine were synthesized. Our approach provides solutions for the coupling of aromatic amines to a protected 8-bromo-2'-deoxyguanosine derivative, for the selective acetylation of the coupled adduct at N(8) and for a protecting group scheme preserving the integrity of the base-labile N(8) acetyl group during DNA synthesis.  相似文献   

11.
Purohit V  Basu AK 《Organic letters》2000,2(13):1871-1874
[reaction: see text] An efficient method for the synthesis of oligonucleotides containing a site-specific DNA adduct formed by the carcinogens 1,6- and 1, 8-dinitropyrene has been developed. Palladium-catalyzed amination provided a straightforward route for the synthesis of aminonitropyrenes which, following separation, were reduced to the nitrosonitropyrenes. The N-hydroxyaminonitropyrene, generated in situ from each nitrosonitropyrene, was used successfully to introduce the dinitropyrene-derived DNA adduct at a defined site in an oligonucleotide.  相似文献   

12.
Reaction of 1-aryl-3-methylene-2-pyrrolidinones with several active hydrogen compounds resulted in a Michael addition to give the title compounds. The compounds were screened in the maximal electroshock seizure and subcutaneous pentylenetetrazol seizure threshold tests for anticonvulsant activity and in the rotorod test for neurotoxicity in mice. Several compounds displayed anticonvulsant activity, but only at the high dose levels of 300 or 600 mg/kg.  相似文献   

13.
N(2)-alkyl analogues of 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) were synthesized (alkyl = propyl, benzyl) via reductive amination of the protected OG nucleoside and incorporated into various positions of an RNA strand. Thermal stability studies of duplexes containing A or C opposite a single modified base revealed only moderate destabilization. Both OG as well as its N(2)-alkyl analogues can pair opposite A or C with nearly equal stability, potentially offering a new means of modulating RNA-protein interactions in the minor vs major grooves.  相似文献   

14.
Platinum anticancer drug binding to DNA creates large distortions in the cross-link (G*G*) and the adjacent XG* base pair (bp) steps (G* = N7-platinated G). These distortions, which are responsible for anticancer activity, depend on features of the duplex (e.g., base pairing) and of the cross-link moiety (e.g., the position and canting of the G* bases). The duplex structure stabilizes the head-to-head (HH) over the head-to-tail (HT) orientation and right-handed (R) over left-handed (L) canting of the G* bases. To provide fundamental chemical information relevant to the assessment of such duplex effects, we examine (S,R,R,S)-BipPt(oligo) adducts (Bip = 2,2'-bipiperidine with S,R,R,S chiral centers at the N, C, C, and N chelate ring atoms, respectively; oligo = d(G*pG*) with 3'- and/or 5'-substituents). The moderately bulky (S,R,R,S)-Bip ligand favors L canting and slows rotation about the Pt-G* bonds, and the (S,R,R,S)-BipPt(oligo) models provide more useful data than do dynamic models derived from active Pt drugs. All 5'-substituents in (S,R,R,S)-BipPt(oligo) adducts favor the normal HH conformer (~97%) by destabilizing the HT conformer through clashes with the 3'-G* residue rather than through favorable H-bonding interactions with the carrier ligand in the HH conformer. For all (S,R,R,S)-BipPt(oligo) adducts, the S pucker of the 5'-X residue is retained. For these adducts, a 5'-substituent had only modest effects on the degree of L canting for the (S,R,R,S)-BipPt(oligo) HH conformer. This small flanking 5'-substituent effect on an L-canted HH conformer contrasts with the significant decrease in the degree of R canting previously observed for flanking 5'-substituents in the R-canted (R,S,S,R)-BipPt(oligo) analogues. The present data support our earlier hypothesis that the distortion distinctive to the XG* bp step (S to N pucker change and movement of the X residue) is required for normal stacking and X·X' WC H bonding and to prevent XG* residue clashes.  相似文献   

15.
1-Nitropyrene (1NPy) is the most abundant nitropolycyclic aromatic contaminant encountered in diesel exhausts. Understanding its photochemistry is important because of its carcinogenic and mutagenic properties, and potential phototransformations into biologically active products. We have studied the photophysics and photochemistry of 1NPy in solvents that could mimic the microenvironments in which it can be found in the atmospheric aerosol, using nanosecond laser flash photolysis, and conventional absorption and fluorescence techniques. Significant interactions between 1NPy and solvent molecules are demonstrated from the changes in the magnitude of the molar absorption coefficient, bandwidth at half-peak, oscillator strengths, absorption maxima, Stokes shifts, and fluorescence yield. The latter are very low (10 (-4)), increasing slightly with solvent polarity. Low temperature phosphorescence and room temperature transient absorption spectra demonstrate the presence of a low energy (3)(pi,pi*) triplet state, which decays with rate constants on the order of 10 (4)-10 (5) s (-1). This state is effectively quenched by known triplet quenchers at diffusion control rates. Intersystem crossing yields of 0.40-0.60 were determined. A long-lived absorption, which grows within the laser pulse, and simultaneously with the triplet state, presents a maximum absorption in the wavelength region of 420-440 nm. Its initial yield and lifetime depend on the solvent polarity. This species is assigned to the pyrenoxy radical that decays following a pseudo-first-order process by abstracting a hydrogen atom from the solvent to form one the major photoproducts, 1-hydroxypyrene. The (3)(pi,pi*) state reacts readily ( k approximately 10 (7)-10 (9) M (-1) s (-1)) with substances with hydrogen donor abilities encountered in the aerosol, forming a protonated radical that presents an absorption band with maximum at 420 nm.  相似文献   

16.
Synthesis of 1-benzoxepines by dehydrochlorination of carbene adducts of chromenes has been carried out. Different alkyl-, alkylidene-, alkoxy-, aryl- and hetarylsubstituted 1-benzoxepines were obtained.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 188–194, February, 1987.  相似文献   

17.
18.
Reaction of aluminum trichloride or gallium trichloride with the extremely weak base hexachlorotriphosphazene gives adducts in which the group 13 element is bound to a phosphazene nitrogen atom. In solution, the adducts exhibit fluxional behavior. The phosphazene ring of the adducts is distorted into a slight chair conformation.  相似文献   

19.
Bromobenzoquinones (BBQs) represent a class of reactive metabolites of various aromatic contaminants with bromine-containing substituents, including bromobenzene, bromophenols, polybrominated diphenyl ethers (PBDEs). Recently, 2,6-dibromobenzoquinone also has been detected directly from drinking water. The alternation of the genome caused by covalent binding of chemicals or their metabolites to DNA provides a viable mechanism for carcinogenicity. In the present study, electrospray ionization coupled with ion trap mass spectrometry (ITMS), triple quadrupole MS or quadrupole time-of-flight MS was applied for the analysis of DNA adducts formed by BBQs. The study demonstrated 2-monobromobenzoquinone and 2,6-dibromobenzoquinone could covalently bind to deoxyguanosine (dG) and DNA in vitro. The chemical structures of the DNA adducts were confirmed by accurate mass values, collision-induced fragmentation tandem mass spectra as well as isotopic patterns. Generally, the reaction mechanism for the DNA adduction involved Michael addition between the electron-deficient carbon from the quinone and the nucleophilic exocyclic nitrogen from the dG followed by reductive cyclization with loss of a small molecule such as H(2)O, or HBrO. It was of particular interest to note that some adducts were generated from the reaction of one dG molecule with two BBQ molecules. The obtained results provided new information for assessing the potential cancer risk associated with bromobenzene, bromophenols, PBDEs and BBQs.  相似文献   

20.
Catalyst-free copolymerization of ethyl diazoacetate(EDA) with carbethoxycarbene(CEC) has been achieved through two approaches:microwave irradiation and enzyme-assisted(Novozyme-435)system.The structure of the copolymer was characterized by MALDI-TOF MS(m/z from 2000 to 2450),which suggested that the main chain of the copolymer consisted of-CH(COOEt)- and-N=NCH(COOEt)- frameworks.Fourier transform infrared(FT1R) spectrometry,elemental analysis,and Raman spectrometry proved the incorporation of azo group in the copolymer.The results indicated that the CEC radicals were generated under microwave irradiation(with or without Novozyme-435) from EDA.The mechanism study described that the generation speed of CEC radical was faster than its polymerization,and the excess CEC radicals improved the activity of the N2C1 group,thus inducing some EDA molecules as radicals.The two kinds of radicals co-coupled to result in poIy(CEC-co-EDA) through the C1/N2C1 copolymerization,but the homopolymerization of CEC radical occurred quicker than its cocoupling with activated EDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号