首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept, the present status, key issues and future prospects of a novel hexagonal binary decision diagram (BDD) quantum circuit approach for III–V quantum large-scale integrated circuits (QLSIs) are presented and discussed. In this approach, the BDD logic circuits are implemented on III–V semiconductor-based hexagonal nanowire networks controlled by nanoscale Schottky gates. The hexagonal BDD QLSIs can operate at delay-power products near the quantum limit in the quantum regime as well as in the many-electron classical regime. To demonstrate the feasibility of the present approach, GaAs Schottky wrap gate (WPG)-based single-electron BDD node devices and their integrated circuits were fabricated and their proper operations were confirmed. Selectively grown InGaAs sub-10 nm quantum wires and their hexagonal networks have been investigated to form high-density hexagonal BDD QLSIs operating in the quantum regime at room temperature.  相似文献   

2.
Feasibility of growth of InGaAs ridge quantum wire (QWR) hexagonal network structures by atomic hydrogen (H*)-assisted selective molecular beam epitaxy (MBE) is investigated for use in novel hexagonal quantum circuits based on the binary-decision diagram (BDD) architecture. The fabricated structures were characterized in detail by SEM, AFM, PL and CL measurements.

By using patterned substrates with mesa-pattern directions of 1 0 0– and 5 1 0– together with optimized H*-assisted selective MBE, hexagonal networks of the sharp and uniform InGaAs ridge structures were realized down to submicron pitches. Embedded InGaAs QWR hexagonal networks were successfully formed on the ridge structures, giving prospects of realizing a node device density lager than 108 cm−2.  相似文献   


3.
Transport phenomena in a double-bend quantum structure fabricated in the two-dimensional electron gas of a modulation doped GaAs/AlGaAs structure, are studied experimentally. The structure consists of an electrostatically defined quantum dot with two one-dimensional wires connected on opposite corners of the dot. The current–voltage characteristics of such devices exhibit quantized conductance breakdown (non-linear behavior), conductance variation with confinement, and non-linear and asymmetric behavior at high bias condition. Low temperature conductance of this structure shows evidence of resonant tunneling, while the peaks of the conductance vary with temperature.  相似文献   

4.
While quantized conductance steps in short quantum wires are understood through a single electron picture, additional structure often observed in high-quality one-dimensional systems near g=0.7×(2e2/h) is commonly interpreted as arising due to many-body interactions. Most studies of conductance structure below 2e2/h use short one-dimensional wires where transport is known to be ballistic. We report transport measurements for both short (0.5 μm) and long (5 μm) quantum wires, and use both conductance and nonlinear transport to explore the behavior of one-dimensional wires.  相似文献   

5.
We have measured the temperature dependence of the conductance in long V-groove quantum wires fabricated in GaAs/AlGaAs heterostructures. Our data are consistent with recent theories developed within the framework of the Luttinger-liquid model, in the limit of weakly disordered wires. We show that, for the relatively low level of disorder in our quantum wires, the value of the interaction parameter g congruent with 0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which does not allow their treatment in the framework of perturbation theory. Fitting such data with perturbation-theory models leads inevitably to wrong (lower) values of g.  相似文献   

6.
The effect of quantum contact resistance on one-dimensional (1D) electrical conductance was investigated in quantum wires (QWR) realized with V-shaped GaAs/AlGaAs heterostructure. The transition length between the electron reservoir and the QWR was controlled by employing an electric field. The required transition length is found to decrease with increasing overlap between the 2D states in the reservoir and the 1D states in the QWR.  相似文献   

7.
The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R≥3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Δso| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.  相似文献   

8.
We measure the Coulomb drag between parallel split-gate quantum wires with a quantum dot embedded in one of the two wires (drive wire). We observe negative Coulomb drag when a Coulomb oscillation peak appears in the drive wire and the conductance of the other wire (drag wire) is slightly below the first plateau. This indicates that correlation holes are dragged in the drag wire by single electron tunneling through the quantum dot in the drive wire. The drag is only promoted in the drag wire near the barrier regions of the dot, and low compressibility of the drag wire is necessary for the negative drag to occur.  相似文献   

9.
Regular arrays of InGaAs quantum dots (QDs) with a 100-nm-periodicity have been successfully fabricated by controlling the nucleation sites on artificially prepared nano-hole arrays. The nucleation probability of a single QD at each nano-hole reached 100% by depositing InGaAs at low temperature and subsequent annealing. Four InGaAs QD layers were vertically stacked while conserving the regularity, and the stacked QD array has shown a clear photoluminescence peak at room temperature. We discuss the effects of several growth conditions on the nucleation probability of QDs.  相似文献   

10.
In this study, pulsed laser ablation, online annealing, and following size classification using a differential mobility analyzer (DMA) were employed to fabricate quantum dots (QDs) of zinc oxide (ZnO). The irregularly shaped ZnO particles were obtained at annealing temperature less than 873 K, which gradually transformed into spherical QDs with increasing the annealing temperature. Finally, ZnO QDs with narrow size distribution having spherical shapes were successfully obtained at temperatures above 1173 K under the DMA classification at a nominal size of 10 nm. TEM observation demonstrated that the ZnO QDs obtained by this process were well-crystallized single crystallites with a wurtzite structure. Further, ZnO QDs with average sizes in the range of 4.8–8.1 nm were successfully fabricated by reducing the specified sizes of DMA. These features of the fabricated ZnO QDs are favorable for investigation of intrinsic quantum size effect in ZnO.  相似文献   

11.
We investigate theoretically the electronic transport through a parallel-coupled double quantum dot (DQD) molecule attached to metallic electrodes, in which the spin-flip scattering on each quantum dot is considered. Special attention is paid to the effects of the intradot spin-flip processes on the linear conductance by using the equation of motion approach for Green’s functions. When a weak spin-flip scattering on each quantum dot is present, the single Fano peak splits into two Fano peaks, and the Breit–Wigner resonance may be suppressed slightly. When the spin-flip scattering strength on each quantum dot becomes strong, the linear conductance spectrum consists of two Breit–Wigner peaks and two Fano peaks due to the quantum interference effects. The positions and shapes of these resonant peaks can be controlled by using the magnetic flux through the quantum device.  相似文献   

12.
A new nanoelectromechanical device is introduced, useful for quantum electromechanics. The focus will be on single-electron transistors with a mechanical degree of freedom. The technical approach as well as the experimental realization of a new vertical mechanical single-electron tunneling device are discussed. This transistor is fabricated in a semiconductor material, forming a nanopillar between source and drain contacts. This concept can readily be transferred to large scale fabrication, being of importance for building integrated sensors and amplifier stages for quantum electromechanical circuits. Operation of the device at room temperature in the frequency range of 350–400 MHz is presented. A straightforward theoretical model of device operation is given.  相似文献   

13.
We describe our study of ballistic transport in nanostructures of lead telluride, PbTe. Submicron devices have been fabricated by electron beam lithography and chemical etching of 50 nm wide PbTe single quantum wells embedded between Pb0.92Eu0.08Te barriers grown by MBE on BaF2. The electron concentration in the devices was tuned by the gate voltage applied across an interfacial p–n junction. The most important observation was zero-magnetic field conductance quantization (in multiplies of 2e2/h) in narrow constrictions of dimensions comparable to electron mean free path calculated from transport mobility. This indicates considerable relaxation of requirements for quantum ballistic transport in comparison with other materials. We argue that the huge static dielectric constant of PbTe (0=1350 at 4.2 K) leads to suppression of the long-range Coulomb potentials of charged impurities and, thus, provides favorable conditions for the conductance quantization.  相似文献   

14.
Ultra-fine silicon quantum wires with SiO2 boundaries were successfully fabricated by combining SiGe/Si heteroepitaxy, selective chemical etching and subsequent thermal oxidation. The results are observed by scanning electron microscopy. The present method provides a very controllable way to fabricate ultra-fine silicon quantum wires, which is fully compatible with silicon microelectronic technology. As one of the key processes of controlling the lateral dimensions of silicon quantum wires, the wet oxidation of silicon wires has been investigated, self-limiting wet oxidation phenomenon in silicon wires is observed. The characteristic of the oxidation retardation of silicon wires is discussed.  相似文献   

15.
We consider wires near a zero temperature transition between superconducting and metallic states. The critical theory obeys hyperscaling, which leads to a universal frequency, temperature, and length dependence of the conductance; quantum and thermal phase slips are contained within this critical theory. Normal, superconducting, and mixed (SN) leads on the wire determine distinct universality classes. For the SN case, wires near the critical point have a universal dc conductance which is independent of the length of the wire at low temperatures.  相似文献   

16.
Quantum-mechanical calculations of the conductance for model devices, consisting of dual semi-infinite quantum wires connected in series by a cavity, are carried out with use of the coupled-mode transfer method and mode matching technique. The effects of the mode-mode coupling and geometry-induced scattering on the quantum conductance are in detail studied by varying the geometric structure of the cavity. There are no traces of quantization conductance. The pattern of the conductance displays many peaks and dips. The threshold energy of the first onset of the conductance is lower than the normal value for opening the propagation channel of the lowest subband in the quantum wire. The overall character of the conductance exhibits heavy fluctuations around the classical conductance for the relevant point contact. The fluctuation amplitude is of order of 2e 2/h, similar to universal conductance fluctuations. The oscillatory structure becomes rich and dense as the scale of the cavity increases. There is a global trend for the conductance to rise as the cavity is compressed. The structures of resonant peaks and antiresonance dips in the conductance are originated from the mode coupling among the subbands in the cavity and quantum wires. The heavy conductance fluctuation may be caused by the quantum interference of the electron waves due to the multiple scattering (reflections) of electrons by the cavity boundaries.  相似文献   

17.
The electronic structures of quantum spheres and quantum wires are studied in the framework of the effective-mass theory. The spin-orbital coupling (SOC) effect is taken into account. On the basis of the zero SOC limit and strong SOC limit the hole quantum energy levels as functions of SOC parameter λ are obtained. There is a fan region in which the ground and low-lying excited states approach those in the strong SOC limit as λ increases. Besides, some theoretical results on the corrugated superlattices (CSL) are given.  相似文献   

18.
We study single-electron-transistor (SET) operation of the quantum dot (QD) in a strong magnetic field under weak illumination of far-infrared (FIR) radiation, which causes cyclotron resonance (CR) excitation inside the QD. We find that the SET conductance resonance is exceedingly sensitive to the FIR: It switches on (off) upon the excitation of just one electron to a higher Landau level inside the QD, whereby enabling us to detect individual events of FIR-photon (hν 6 meV) absorption.  相似文献   

19.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

20.
The electronic transport through a side-coupled triple quantum dot array (QDA) is investigated by means of Green function technique within the tight-binding framework. We obtain the formula of the linear conductance of QDA. The linear conductance spectrum is numerically studied. We discuss the feasibility of applying our structure to the electron spin polarized device and calculate the ratio of the spin polarized current flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号