共查询到20条相似文献,搜索用时 46 毫秒
1.
Ricardo P Santos Theodora T P Arruda Cibele B M Carvalho Victor A Carneiro Lara Q V Braga Edson H Teixeira Francisco V S Arruda Benildo S Cavada Alexandre Havt Taianá M de Oliveira Gustavo A Bezerra Valder N Freire 《Microscopy and microanalysis》2008,14(2):150-158
Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness. 相似文献
2.
We used an atomic force microscope to investigate silicon nitride tip interactions with various materials (copper, nickel, silicon carbide) as a function of pH. The electrolyte used was 10(-3) M NaCl and the interactions observed through force versus distance curves (attraction or repulsion) depended on the pH value. Interaction forces calculation was derived from force versus distance curve data and the results are discussed in terms of electrostatic interactions using Zeta potential theory. 相似文献
3.
Sonicated small unilamellar egg yolk phosphatidylcholine (EggPC) vesicles were investigated using atomic force microscopy (AFM) imaging and force measurements. Three different topographies (convex, planar, and concave shape) of the EggPC vesicles on the mica surface were observed by tapping mode in fluid, respectively. It was found that the topography change of the vesicles could be attributed to the interaction force between the AFM tip and vesicles. Force curves between an AFM tip and an unruptured vesicle were obtained in contact mode. During approach, two breaks corresponding to the abrupt penetration of upper and lower bilayer of vesicle were exhibited in the force curve. Both breaks spanned a distance of around 4 nm close to the EggPC bilayer thickness. Based on Hertz analysis of AFM approach force curves, the Young's modulus (E) and the bending modulus (kc) for pure EggPC vesicles were measured to be (1.97 +/- 0.75) x 10(6)Pa and (0.21 +/- 0.08) x 10(-19)J, respectively. The results show that the AFM can be used to obtain good images of intact and deformed vesicles by tapping mode, as well as to probe the integrity and bilayer structure of the vesicles. AFM force curve compare favorably with other methods to measure mechanical properties of soft samples with higher spatial resolution. 相似文献
4.
Preethi L. Chandran Emilios K. Dimitriadis Peter J. Basser Ferenc Horkay 《Journal of Polymer Science.Polymer Physics》2010,48(24):2575-2581
Aggrecan is a bottlebrush shaped macromolecule found in the extracellular matrix of cartilage. The negatively charged glycosaminoglycan (GAG) chains attached to its protein backbone give aggrecan molecules a high charge density, which is essential for exerting high osmotic swelling pressure and resisting compression under external load. In solution, aggrecan assemblies are insensitive to the presence of calcium ions, and show distinct osmotic pressure versus concentration regimes. The aim of this study is to investigate the effect of ionic environment on the structure of aggrecan molecules adsorbed onto well‐controlled mica surfaces. The conformation of the aggrecan was visualized using Atomic Force Microscopy. On positively charged APS mica the GAG chains of the aggrecan molecules are distinguishable, and their average dimensions are practically unaffected by the presence of salt ions. With increasing aggrecan concentration they form clusters, and at higher concentrations they form a continuous monolayer of conforming molecules. On negatively charged mica, the extent of aggrecan adsorption varies with salt composition. Understanding aggrecan adsorption onto a charged surface provides insight into its interactions with bone and implant surfaces in the biological milieu. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献
5.
Stevens MM Allen S Chan WC Davies MC Roberts CJ Tendler SJ Williams PM 《The Analyst》2000,125(2):245-250
We demonstrate the creation of a protein multilayer which utilises the high affinity interaction between streptavidin and biotin and incorporates a peptidic spacer. Surface plasmon resonance measurements enabled us to monitor the construction of the multilayer in real time. Atomic force microscopy was utilised to determine surface functionality at each stage of the multilayer construction, allowing us to investigate the associated mechanical properties. In this context we observed an increase in biomolecular stretching on the formation of the multilayer. We demonstrate, utilising circular dichroism, that variations in the solvent can affect the secondary structure of the peptide linker and hence its mechanical properties. Trifluoroethanol titrations on the assembled system indicate that the multilayer properties are also stimuli responsive with regard to solvent conditions. These results indicate that the multilayer stretch before cleavage is increased in the presence of trifluoroethanol. This was not expected from the study of the individual linker alone, indicating the need to study the system as a whole as opposed to the isolated components. 相似文献
6.
Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO2 metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the “stickiest” sites. Application of a TiO2-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry. 相似文献
7.
Boks NP Busscher HJ van der Mei HC Norde W 《Langmuir : the ACS journal of surfaces and colloids》2008,24(22):12990-12994
Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface hydrophobicity on initial adhesion forces for the four different S. epidermidis strains was observed. Over time, strengthening of the adhesion forces was virtually absent on hydrophobic dimethyldichlorosilane (DDS)-coated glass, although in a few cases multiple adhesion peaks developed in the retract curves. Bond-strengthening on hydrophilic glass occurred within 5-35 s to maximum adhesion forces of -1.9 +/- 0.7 nN and was concurrent with the development of multiple adhesion peaks upon retract. Poisson analysis of the multiple adhesion peaks allowed separation of contributions of hydrogen bonding from other nonspecific interaction forces and revealed a force contribution of -0.8 nN for hydrogen bonding and +0.3 nN for other nonspecific interaction forces. Time-dependent bacterial adhesion forces were comparable for all four staphylococcal strains. It is concluded that, on DDS-coated glass, the hydrophobic effect causes instantaneous adhesion, while strengthening of the bonds on hydrophilic glass is dominated by noninstantaneous hydrogen bond formation. 相似文献
8.
The mechanical properties of glassy films and glass surfaces have been studied using an atomic force microscope (AFM) through various imaging modes and measuring methods. In this paper, we discuss the viscoelastic response of a glassy surface probed using an AFM. We analyzed the force-distance curves measured on a glassy film or a glassy surface at temperatures near the glass transition temperature, Tg, using a Burgers model. We found that the material's characteristics of reversible anelastic response and viscous creep can be extracted from a force-distance curve. Anelastic response shifts the repulsive force-distance curve while viscous creep strongly affects the slope of the repulsive force-distance curve. When coupled with capillary force, due to the condensation of a thin layer of liquid film at the tip-surface joint, the anelasticity and viscous creep can alter the curve significantly in the attractive region. 相似文献
9.
Local surface charge dissipation studied using force spectroscopy method of atomic force microscopy 下载免费PDF全文
We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
The atomic force microscope (AFM) has been used to examine the stickiness of bacteria on the basis of the analysis of approach and retraction force curves between the AFM tip and the bacterial surface. One difficulty in analyzing approach curve data is that the distance between the AFM tip and the surface of the bacterium is difficult to define. The exact distances are difficult to determine because the surface of the bacterium deforms during force imaging, producing a highly nonlinear region in the approach curve. In this study, AFM approach and retraction curves were obtained using a colloid probe AFM for three strains of Escherichia coli (D21, D21f2, and JM109). These strains differed in their relative adhesion to glass surfaces, on the basis of measurements of sticking coefficients in packed bed flow through column tests. A gradient force curve analysis method was developed to model the interactions between the colloid probe and a surface. Gradient analysis of the approach curve revealed four different regions of colloid-surface interactions during the approach and contact of the probe with the bacterial surface: a noninteraction region, a noncontact phase, a contact phase, and a constant compliance region. The noncontact phase, which ranged from 28 to 59 nm for the three bacterial strains, was hypothesized to arise primarily from steric repulsion of the colloid by extracellular polymers on the bacterial surface. The contact phase, spanning 59-113 nm, was believed to arise from the initial pressure of the colloid on the outer membrane of the cell. The constant compliance region likely reflected the response of the colloid probe to the stiff peptidoglycan layer that confers strength and rigidity to gram negative bacteria. It was shown that the sticking coefficients reported for the three E. coli strains were correlated with the length of the noncontact phase but not the properties of the other phases. Sticking coefficients were also not correlated with any parameters determined from retraction force curves such as pull-off distances or separation energies. These results show that gradient analysis is useful for studying the contribution of the length of the exopolymers on the cell surface to bacterial adhesion to glass surfaces. 相似文献
11.
Bobby G. Sumpter Coral Getino Donald W. Noid Bernhard Wunderlich 《Macromolecular theory and simulations》1993,2(1):55-76
The atomistic dynamics of the interaction of an atomic force microscopic (AFM) probe with a crystalline polyethylene surface was examined by using the molecular dynamics method. The results show that the internal dynamics of the polymer crystal is such that rapid relaxation occurs, providing for a large amount of structural reversibility and making it possible to perform nondestructive AFM experiments. However, surface and/or AFM tip defects or contaminants (such as those which can be induced by polar molecules adsorbed on the surface), can result in significant perturbations in the AFM images produced, causing large and sharp structures to appear on the surface topology. A rationale of the mechanisms responsible for the image distortions is presented, and a relationship to defects observed in AFM and STM experiments is given. 相似文献
12.
Michael Leitner Lorenz G. Stock Lukas Traxler Laurent Leclercq Klaus Bonazza Gernot Friedbacher Hervé Cottet Hanno Stutz Andreas Ebner 《Analytica chimica acta》2016
Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. 相似文献
13.
Intermolecular forces between acetylcholine and acetylcholinesterases studied with atomic force microscopy 总被引:3,自引:0,他引:3
With the aid of atomic force microscopy, the intermolecular forces between acetyleholinesterases (AChE) and its natural substrate acetylcholine (ACh) have been studied. Through force spectrum measurement based on imaging of AChE molecules it was found that the attraction force between individual molecule pairs of ACh and AChE was (10±1) pN just before the quaternary ammonium head of ACh got into contact with the negative end of AChE and the decaying distance of attraction was (4±1) nm from the surface of ACHE. The adhesion force between individual ACh and AChE molecule pairs was (25±2) pN, which had a decaying feature of fast-slow-fast (FSF). The attraction forces between AChE and choline (Ch), the quaternary ammonium moiety and hydrolysate of ACh molecule, were similar to those between AChE and ACh. The adhesion forces between AChE and Ch were (20±2) pN, a little weaker than that between ACh and ACHE. These results indicated that AChE had a steering role for the diffusion of ACh toward it and had r 相似文献
14.
Wallqvist V Claesson PM Swerin A Schoelkopf J Gane PA 《Langmuir : the ACS journal of surfaces and colloids》2007,23(8):4248-4256
Colloidal wood resin components present in pulp are collectively called "pitch". The presence of pitch may cause severe problems due to deposits in and on the paper machine. There is thus a need for controlling pitch aggregation and adsorption. To be able to develop more efficient pitch control systems, one needs to develop the understanding of pitch-pitch interactions and of the interactions between pitch and other materials. With this general goal in mind, we present methods for preparing geometrically well-defined pitch particles attached to atomic force microscopy tips. This has enabled us to investigate the interactions between pitch and talc, an additive commonly used for pitch control. We have used model pitch particles consisting of one component only (abietic acid), a mixture of components (collophonium), and particles prepared from real pitch deposits. We show that the forces acting between pitch and talc are attractive and, once the initial approach is made, exert this attraction out to large distances of separation. We present evidence that the formation of bridging air bubbles or cavities is responsible for this interaction. 相似文献
15.
There is a need to know the nanostructure of pressure-sensitive adhesive (PSA) films obtained from waterborne polymer colloids so that it can be correlated with properties. Intermittent-contact atomic force microscopy (AFM) of an acrylic waterborne PSA film identifies two components, which can be attributed to the polymer and the solids in the serum (mainly surfactant). It is found that when the average AFM tapping force, F(av), is relatively low, the polymer particles appear to be concave. But when F(av) is higher, the particles appear to have a convex shape. This observation is explained by a height artefact caused by differences in the indentation depths into the two components that vary with the tapping amplitude and F(av). To achieve the maximum contrast between the polymer and serum components, F(av) should be set such that the indentation depths are as different as possible. Unlike what is found for the height images, the phase contrast images of the PSA do not show a reversal in contrast over the range of tapping conditions applied. The phase images are thus reliable in distinguishing the two components of the PSA according to their viscoelastic properties. At the surface of films dried at room temperature, the serum component is found in localized regions within permanent depression into the film. 相似文献
16.
This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory. 相似文献
17.
Water condenses between an atomic force microscope (AFM) tip and a surface to form a nanoscale bridge that produces a significant adhesion force on the tip. As humidity increases, the water bridge always becomes wider but the adhesion force sometimes decreases. The authors show that the humidity dependence of the adhesion force is intimately related to the structural properties of the underlying water bridge. A wide bridge whose width does not vary much with tip-surface distance can increase its volume as distance is increased. In this case, the adhesion force decreases as humidity rises. Narrow bridges whose width decreases rapidly with increasing tip-surface distance give the opposite result. This connection between humidity dependence of the adhesion force and the structural susceptibility of the water bridge is illustrated by performing Monte Carlo simulations for AFM tips with various hydrophilicities. 相似文献
18.
Valle-Delgado JJ Molina-Bolívar JA Galisteo-González F Gálvez-Ruiz MJ Feiler A Rutland MW 《Langmuir : the ACS journal of surfaces and colloids》2006,22(11):5108-5114
Adhesion forces between different protein layers adsorbed on different substrates in aqueous media have been measured by means of an atomic force microscope using the colloid probe technique. The effects of the loading force, the salt concentration and pH of the medium, and the electrolyte type on the strength, the pull-off distance, and the separation energy of such adhesion forces have been analyzed in depth. Two very different proteins (bovine serum albumin and apoferritin) and two dissimilar substrates (silica and polystyrene) were used in the experiments. The results clearly point out a very important contribution of the electrostatic interactions in the adhesion between protein layers. 相似文献
19.
Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the function of colloid residence time (T) and solution ionic strength (IS). For three of the proteins, OH-functionalized colloids produced higher adhesion forces to proteins (2.6-30.5 nN; IS=1 mM, T=10s) than COOH- and NH2-functionalized colloids (1.6-6.8 nN). However, protein A produced the largest adhesion force (8.1+/-1.0 nN, T=10 s) with the COOH-functionalized colloid, demonstrating the importance of specific and unanticipated protein-functional group interactions. The NH2-functionalized colloid typically produced the lowest adhesion forces with all proteins, likely due to repulsive electrostatic forces and weak bonds for NH2-NH2 interactions. The adhesion force (F) between functionalized colloids and proteins consistently increased with residence time (T), and data was well fitted by F=ATn. The constant value of n=0.21+/-0.07 for all combinations of proteins and functionalized colloids indicated that water exclusion and protein rearrangement were the primary factors affecting adhesion over time. Adhesion forces decreased inversely with IS for all functional groups interacting with surface proteins, consistent with previous findings. These results demonstrate the importance of specific molecular-scale interactions between functional groups and proteins that will help us to better understand factors colloidal adhesion to surfaces. 相似文献
20.
Ikai A Afrin R Sekiguchi H Okajima T Alam MT Nishida S 《Current protein & peptide science》2003,4(3):181-193
The atomic force microscope has been extensively used not only to image nanometer-sized biological samples but also to measure their mechanical properties by using the force curve mode of the instrument. When the analysis based on the Hertz model of indentation is applied to the approach part of the force curve, one obtains information on the stiffness of the sample in terms of Young's modulus. Mapping of local stiffness over a single living cell is possible by this method. The retraction part of the force curve provides information on the adhesive interaction between the sample and the AFM tip. It is possible to functionalize the AFM tip with specific ligands so that one can target the adhesive interaction to specific pairs of ligands and receptors. The presence of specific receptors on the living cell surface has been mapped by this method. The force to break the co-operative 3D structure of globular proteins or to separate a double stranded DNA into single strands has been measured. Extension of the method for harvesting functional molecules from the cytosol or the cell surface for biochemical analysis has been reported. There is a need for the development of biochemical nano-analysis based on AFM technology. 相似文献