首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ D  = α H, where α is a constant of order LQCD3{\Lambda_{\rm QCD}^3} and ΛQCD ~ 100 MeV is QCD mass scale. In this Letter, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always w D > −1 and mimics a cosmological constant in the late time, while it is possible to have w D < −1 provided the interaction is taken into account. When k = 0, all previous results of ghost dark energy in flat universe are recovered. For the observational test, we use Supernova type Ia Gold sample, shift parameter of cosmic microwave background radiation and the correlation of acoustic oscillation on the last scattering surface and the baryonic acoustic peak from Sloan Digital Sky Survey are used to confine the value of free parameter of mentioned model.  相似文献   

2.
We employ the generalized Chaplygin gas of interacting dark energy to obtain the equation of state for the generalized Chaplygin gas energy density in a non-flat universe. By choosing a negative value for B we see that wΛ eff<-1, which corresponds to a universe dominated by phantom dark energy.  相似文献   

3.
In this paper, an interacting dark energy model in a non-flat universe is studied, with taking interaction form $C=\alpha H\rho _{de}$ C = α H ρ d e . And in this study a property for the mysterious dark energy is aforehand assumed, i.e. its equation of state $w_{\Lambda }=-1$ w Λ = - 1 . After several derivations, a power-law form of dark energy density is obtained $\rho _{\Lambda } \propto a^{-\alpha }$ ρ Λ ∝ a - α , here $a$ a is the cosmic scale factor, $\alpha $ α is a constant parameter introducing to describe the interaction strength and the evolution of dark energy. By comparing with the current cosmic observations, the combined constraints on the parameter $\alpha $ α is investigated in a non-flat universe. For the used data they include: the Union2 data of type Ia supernova, the Hubble data at different redshifts including several new published datapoints, the baryon acoustic oscillation data, the cosmic microwave background data, and the observational data from cluster X-ray gas mass fraction. The constraint results on model parameters are $\Omega _{K}=0.0024\,(\pm 0.0053)^{+0.0052+0.0105}_{-0.0052-0.0103}, \alpha =-0.030\,(\pm 0.042)^{+0.041+0.079}_{-0.042-0.085}$ Ω K = 0.0024 ( ± 0.0053 ) - 0.0052 - 0.0103 + 0.0052 + 0.0105 , α = - 0.030 ( ± 0.042 ) - 0.042 - 0.085 + 0.041 + 0.079 and $\Omega _{0m}=0.282\,(\pm 0.011)^{+0.011+0.023}_{-0.011-0.022}$ Ω 0 m = 0.282 ( ± 0.011 ) - 0.011 - 0.022 + 0.011 + 0.023 . According to the constraint results, it is shown that small constraint values of $\alpha $ α indicate that the strength of interaction is weak, and at $1\sigma $ 1 σ confidence level the non-interacting cosmological constant model can not be excluded.  相似文献   

4.
We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (wD=−1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of wD to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.  相似文献   

5.
A unified model of dark energy and matter is presented using the modified variable Chaplygin gas for interacting dark energy in a non-flat universe. The two entities interact with each other non-gravitationally, which involves a coupling constant. Due to dynamic interaction, a variation in this constant arises that henceforth changes the equations of state of these quantities. We have derived the effective equations of state corresponding to matter and dark energy in this interacting model. Moreover, the case of phantom energy is deduced by putting constraints on the parameters involved.  相似文献   

6.
7.
Motivated by the recent work of Wang, Lin, Pavon, and Abdalla [B. Wang, C.Y. Lin, D. Pavon, E. Abdalla, Phys. Lett. B 662 (2008) 1, arXiv: 0711.2214 [hep-th]], we generalize their work to the non-flat case. In particular, we provide a thermodynamical interpretation for the holographic dark energy model in a non-flat universe. For this case, the characteristic length is no more the radius of the event horizon (RERE) but the event horizon radius as measured from the sphere of the horizon (L  ). Furthermore, when interaction between the dark components of the holographic dark energy model in the non-flat universe is present its thermodynamical interpretation changes by a stable thermal fluctuation. A relation between the interaction term of the dark components and this thermal fluctuation is obtained. In the limiting case of a flat universe, i.e. k=0k=0, all results given in [B. Wang, C.Y. Lin, D. Pavon, E. Abdalla, Phys. Lett. B 662 (2008) 1, arXiv: 0711.2214 [hep-th]] are obtained.  相似文献   

8.
In this paper we study the cosmological evolution of the holographic dark energy in a cyclic universe, generalizing the model of holographic dark energy proposed by Li. The holographic dark energy with c<1 can realize a quintom behavior; namely, it evolves from a quintessence-like component to a phantom-like one. The holographic phantom energy density grows rapidly and dominates the late-time expanding phase, helping to realize a cyclic universe scenario in which the high energy regime is modified by the effects of quantum gravity, causing a turn-around (and a bounce) of the universe. The dynamical evolution of holographic dark energy in the regimes of low energy and high energy is governed by two differential equations, respectively. It is of importance to link the two regimes for this scenario. We propose a link condition giving rise to a complete picture of holographic evolution of a cyclic universe.  相似文献   

9.
A new dark energy model, named “agegraphic dark energy”, has been proposed recently, based on the so-called Károlyházy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.  相似文献   

10.
We investigate observational constraints on the running vacuum model (RVM) of \begin{document}$\Lambda=3\nu (H^{2}+K/a^2)+c_0$\end{document} in a spatially curved universe, where \begin{document}$\nu$\end{document} is the model parameter, \begin{document}$K$\end{document} corresponds to the spatial curvature constant, \begin{document}$a$\end{document} represents the scalar factor, and \begin{document}$c_{0}$\end{document} is a constant defined by the boundary conditions. We study the CMB power spectra with several sets of \begin{document}$\nu$\end{document} and \begin{document}$K$\end{document} in the RVM. By fitting the cosmological data, we find that the best fitted \begin{document}$\chi^2$\end{document} value for RVM is slightly smaller than that of \begin{document}$\Lambda$\end{document}CDM in the non-flat universe, along with the constraints of \begin{document}$\nu\leqslant O(10^{-4})$\end{document} (68% C.L.) and \begin{document}$|\Omega_K=-K/(aH)^2|\leqslant O(10^{-2})$\end{document} (95% C.L.). In particular, our results favor the open universe in both \begin{document}$\Lambda$\end{document}CDM and RVM. In addition, we show that the cosmological constraints of \begin{document}$\Sigma m_{\nu}=0.256^{+0.224}_{-0.234}$\end{document} (RVM) and \begin{document}$\Sigma m_{\nu}=0.257^{+0.219}_{-0.234}$\end{document} (\begin{document}$\Lambda$\end{document}CDM) at 95% C.L. for the neutrino mass sum are relaxed in both models in the spatially curved universe.  相似文献   

11.
张新民 《物理》2005,34(6):405-407
文章对暗物质粒子的候选者和宇宙中暗能量的研究现状作一简单介绍.  相似文献   

12.
张新民 《物理》2005,34(06):405-407
文章对暗物质粒子的候选者和宇宙中暗能量的研究现状作一简单介绍.  相似文献   

13.
14.
A possibility of existing spheres filled with a uniform constant scalar field in the Universe is shown. These spheres can act as “dark matter” and can be responsible for a decreasing behavior of the “ rotational” curved galaxies observed. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 9–19, April, 2006.  相似文献   

15.
By incorporating the holographic principle in a time-depending Λ-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures.  相似文献   

16.
We have investigated the model of dark energy interacting with dark matter by choosing inhomogeneous equations of state for the dark energy and a nonlinear interaction term for the underlying interaction. The equations of state have dependencies either on the energy densities, the redshift, the Hubble parameter or the bulk viscosity. We have considered these possibilities and have derived the effective equations of state for the dark energy in each case.  相似文献   

17.
18.
The model of holographic dark energy in which dark energy interacts with dark matter is investigated in this paper. In particular, we consider the interacting holographic dark energy model in the context of a perturbed universe, which was never investigated in the literature. To avoid the large-scale instability problem in the interacting dark energy cosmology, we employ the generalized version of the parameterized post-Friedmann approach to treating the dark energy perturbations in the model. We use the current observational data to constrain the model. Since the cosmological perturbations are considered in the model, we can then employ the redshift-space distortions (RSD) measurements to constrain the model, in addition to the use of the measurements of expansion history, which has never been done in the literature. We find that, for both the cases with \(Q=\beta H\rho _\mathrm{c}\) and with \(Q=\beta H_0\rho _\mathrm{c}\), the interacting holographic dark energy model is more favored by the current data, compared to the holographic dark energy model without interaction. It is also found that, with the help of the RSD data, a positive coupling \(\beta \) can be detected at the \(2.95\sigma \) statistical significance for the case of \(Q=\beta H_0\rho _\mathrm{c}\).  相似文献   

19.
In this paper, we revisit the generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρ GCG/ρ GCG0=[B s +(1−B s )a −3(1+α)]1/(1+α), where α and B s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literature. By using the Markov Chain Monte Carlo method, we find the results a = 0.00126-0.00126- 0.00126+ 0.000970+ 0.00268alpha=0.00126_{-0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs = 0.775-0.0161- 0.0338+ 0.0161+ 0.0307B_{s}= 0.775_{-0.0161- 0.0338}^{+ 0.0161+ 0.0307}.  相似文献   

20.
Derya G Deveci  Ekrem Aydiner 《中国物理 B》2017,26(10):109501-109501
In this study, we deal with the holographic model of interacting dark components of dark energy and dark matter quadratic case of the equation of state parameter(Eo S). The effective equations of states for the interacting holographic energy density are derived and the results are analyzed and compared with the solution of the linear form in the literature.The result of our work shows that the value of interaction term between dark components affects the fixed points at far future in the DE-dominated universe in the case of quadratic Eo S parameter; it is a different result from the linear case in the theoretical results in the literature, and as the Quintom scenario the equations of state had coincidence at the cosmological constant boundary of -1 from above to below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号