首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
固态量子计算的若干重要物理问题研究   总被引:3,自引:0,他引:3  
李树深  吴晓光  郑厚植 《物理》2004,33(6):404-406
量子计算机拥有比经典计算机更为强大的计算能力.人们普遍认为量子计算机最终将会在固态系统中实现.文章介绍了一些有关固态量子计算的研究进展,其中包括超导电荷量子比特方案、几何量子计算、量子点量子比特及量子计算若干基本问题研究.最后给出了固态量子计算的发展趋势.  相似文献   

2.
固态量子计算   总被引:4,自引:0,他引:4  
量子计算机拥有比经典计算机更强大的计算能力,人们普遍认为,量子计算机最终将会在固态系统中实现,文章介绍了三种固态量子计算机的方案,它们分别基于固态核振磁共振,超导结和量子点。  相似文献   

3.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

4.
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用.广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系.利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题.从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉.广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算.基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机.在原理上对偶计算机超越了经典的计算机和现有的量子计算机.在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果.除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性.形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性.目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础.本文着重从物理的角度去综述广义量子干涉原理和对偶计算机.现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力.这样,我们可以使用一台具有n+log<,2>d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍.我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式.利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来.对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会.在对偶计算机中,除了幺正操作外.还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作.目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质.此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法.由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用.  相似文献   

5.
正虽然几十年前就提出了量子计算的概念,但量子计算机技术在过去几年才实现。已有几个公司如IBM,Google和Rigetti可提供云量子计算。这些公司的量子芯片与互联网相连。用户只需将程序代码发送到其中一个提供量子计算的设备,计算结果便会返回给用户。橡树岭国家实验室的Eugene Dumitrescu及其合作者通过云服务器,使用量子计算机进行了氘核结合能的计算。这是首次用量子计算机进行关  相似文献   

6.
指向量子计算的约瑟夫森线路   总被引:1,自引:0,他引:1  
戴闻 《物理》2003,32(8):502-502
在量子信息处理所涵盖的各分支领域中 ,尽管量子密钥分发的实验已经发展到了实际保密通信中可以利用的阶段 ,量子计算的真正实现仍是一个 10— 2 0年的远期目标 .已建成的核磁共振量子计算机 ,仅仅包括 7个量子位 (qubit) ,其体积却比真空管计算机还要大 .在这台计算机上 ,已经完成的“复杂”运算是 ,将合数 15分解为 3和 5两因子的乘积 .然而理论已经证明 :要想对一个十进制 6 0位数进行因子分解 ,用现行最快的电子计算机 (10 13 次 /s)需作 10 3 0 次运算 ,耗时10 17s(约等于宇宙年龄 ) .如若采用量子算法 ,在量子计算机(运算速度同样是 1…  相似文献   

7.
量子信息讲座读讲 第一讲 量子计算中的因子分解   总被引:2,自引:0,他引:2  
张镇九  张昭理 《物理》2000,29(9):560-564
因子分解对所有的现行计算机而言是难解的。这是现在通用的公共加密系统的基础。文章介绍了在量子计算机上的进行的Shor量子算法,即利用量子态的相干叠加和纠缠特性以及量子逻辑门实现量子计算的方法;并着重从理论原理和实验实现忱两方面说明利用余因子函数和离散傅里叶变换使这种量子算法对因子分解是有效的。  相似文献   

8.
龙桂鲁 《物理》2012,41(3):187
隐秘计算(blindc omputing)是一种安全的远程计算.用户可以使用放在远处的计算机服务器进行计算,但是他的输入、计算过程或者输出结果不会泄露给任何其他人,包括服务器的提供商.现在具有这种特点的隐秘量子计算机在实验室诞生了,维也纳大学的Philip Walther及其同事在实验室里演示了一个小型隐秘量子计算机[1].量子力学原理使得量子计算机具有比经典计算机更加  相似文献   

9.
因子分解对所有的现行计算机而言是难解的 .这是现在通用的公共加密系统的基础 .文章介绍了在量子计算机上进行的Shor量子算法 ,即利用量子态的相干叠加和纠缠特性以及量子逻辑门实现量子计算的方法 ;并着重从理论原理和实验实现这两方面说明利用余因子函数和离散傅里叶变换使这种量子算法对因子分解是有效的 .  相似文献   

10.
<正>量子计算和量子模拟具有强大的并行计算和模拟能力,不仅为经典计算机无法解决的大规模计算难题提供有效解决方案,也可有效揭示复杂系统的物理规律,为新能源开发、新材料设计等提供指导~([1])。量子计算研究的终极目标是构建通用型量子计算机,但这一目标需要制备大规模的量子纠缠并进行容错计算,实现这一目标仍然需要经过长期不懈的努力。当前,量子计算的短期目标是通过发展专用型量子计算机,即专用量子  相似文献   

11.
RSA cryptography is based on the difficulty of factoring large integers, which is an NP-hard(and hence intractable) problem for a classical computer. However, Shor's algorithm shows that its complexity is polynomial for a quantum computer, although technical difficulties mean that practical quantum computers that can tackle integer factorizations of meaningful size are still a long way away. Recently, Jiang et al. proposed a transformation that maps the integer factorization problem onto the quadratic unconstrained binary optimization(QUBO) model. They tested their algorithm on a D-Wave 2000 Q quantum annealing machine, raising the record for a quantum factorized integer to 376289 with only 94 qubits. In this study, we optimize the problem Hamiltonian to reduce the number of qubits involved in the final Hamiltonian while maintaining the QUBO coefficients in a reasonable range, enabling the improved algorithm to factorize larger integers with fewer qubits. Tests of our improved algorithm using D-Wave's hybrid quantum/classical simulator qbsolv confirmed that performance was improved, and we were able to factorize 1005973, a new record for quantum factorized integers, with only 89 qubits. In addition, our improved algorithm can tolerate more errors than the original one. Factoring 1005973 using Shor's algorithm would require about 41 universal qubits,which current universal quantum computers cannot reach with acceptable accuracy. In theory, the latest IBM Q System OneTM(Jan. 2019) can only factor up to 10-bit integers, while the D-Wave have a thousand-fold advantage on the factoring scale. This shows that quantum annealing machines, such as those by D-Wave, may be close to cracking practical RSA codes, while universal quantum-circuit-based computers may be many years away from attacking RSA.  相似文献   

12.
There has recently been considerable interest in the use of nuclear magnetic resonance (NMR) as a technology for the implementation of small quantum computers. These computers operate by the laws of quantum mechanics, rather than classical mechanics and can be used to implement new quantum algorithms. Here we describe how NMR in principle can be used to implement all the elements required to build quantum computers, and draw comparisons between the pulse sequences involved and those of more conventional NMR experiments.  相似文献   

13.
Over the last century, a large number of physical and mathematical developments paired with rapidly advancing technology have allowed the field of quantum chemistry to advance dramatically. However, the lack of computationally efficient methods for the exact simulation of quantum systems on classical computers presents a limitation of current computational approaches. We report, in detail, how a set of pre-computed molecular integrals can be used to explicitly create a quantum circuit, i.e. a sequence of elementary quantum operations, that, when run on a quantum computer, obtains the energy of a molecular system with fixed nuclear geometry using the quantum phase estimation algorithm. We extend several known results related to this idea and discuss the adiabatic state preparation procedure for preparing the input states used in the algorithm. With current and near future quantum devices in mind, we provide a complete example using the hydrogen molecule of how a chemical Hamiltonian can be simulated using a quantum computer.  相似文献   

14.
七量子位Deutsch-Josza量子算法的核磁共振实验实现   总被引:1,自引:0,他引:1  
近年来 ,量子计算机的研究有了很大的发展 ,在目前提出的各种量子计算的方案中 ,核磁共振技术对模拟和演示量子算法以及验证量子计算机的优越性做出了巨大的贡献 .Deutsch Jozsa算法是一种研究较为广泛的量子算法 ,它可以用核磁共振实验予以验证 ,并可根据Cirac等人提出的方案予以简化 .报道了在核磁共振量子计算机上实验实现七位Deutsch Jozsa算法的过程和结果. Recent years, remarkable progresses in experimental realization of quantum information have been made, especially based on nuclear magnetic resonance (NMR) theory. In all quantum algorithms, Deutsch-Jozsa algorithm has been widely studied. It can be realized on NMR quantum computer and also can be simplified by using the Cirac s scheme. In this paper, at first the principle of Deutsch-Jozsa quantum algorithm is analyzed, then we implement the seven-qubit Deutsch-Jozsa algorithm...  相似文献   

15.
Theory of computer calculations strongly depends on the nature of elements the computer is made of. Quantum interference allows to formulate the Shor factorization algorithm turned out to be more effective than any one written for classical computers. Similarly, quantum wave packet reduction allows to devise the Grover search algorithm which outperforms any classical one. In the present paper we argue that the quantum incoherent tunneling can be used for elaboration of new algorithms able to solve some NP-hard problems, such as the Traveling Salesman Problem, considered to be intractable in the classical theory of computer computations.  相似文献   

16.
~~Implementation of a multiple round quantum dense coding using nuclear magnetic resonance1. Bennett, C. H., Wiesner, S. J., Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett., 1992, 69(20): 2881-2884. 2. Mattle, K., Weinfurter, H., Kwiat, P. G. et al., Dense coding in experimental quantum communication, Phys. Rev. Lett., 1996, 76(25): 4656-4659. 3. Fang, X. M., Zhu, X. W., Feng, M. et al., Experimental implementation of dens…  相似文献   

17.
S. Yamashita 《Laser Physics》2006,16(4):730-734
It is widely believed that quantum computers (if realized) will be more powerful than today’s computers from the viewpoint of computational complexity. However, it is not obvious how to utilize quantum computers in practical situations. For practical purposes, a Grover search may be one of the most promising quantum algorithms known so far. Thus, in this paper, we propose an efficient framework where we can use Grover search for general programming. Our framework has the following steps. (1) A programmer writes a program by using standard C++ programming language. (2) Some if expressions within for loops in the C++ source code are chosen as candidates to be performed as a Grover search on a quantum computer. (3) The framework automatically generates a corresponding quantum circuit for each Grover search chosen in (2). Unlike the existing quantum circuit design methods, we can treat large problems in our quantum circuit design. (4) By evaluating the number of primitive quantum gates in the quantum circuit generated in (3), the framework determines whether the processing time of the quantum circuit is faster than the processing time of the corresponding if expression on a classical computer. If the framework determines that the quantum circuit is faster, it generates some interface source codes for a classical computer. Thus, in our framework, a programmer can use a Grover search with almost no effort.  相似文献   

18.
孔祥宇  朱垣晔  闻经纬  辛涛  李可仁  龙桂鲁 《物理学报》2018,67(22):220301-220301
过去的二十年中,量子信息相关研究取得了显著的进展,重要的理论和实验工作不断涌现.与其他量子信息处理系统相比,基于自旋动力学的核磁共振系统,不仅具有丰富而且成熟的控制技术,还拥有相干时间长、脉冲操控精确、保真度高等优点.这也是核磁共振体量子系统能够精确操控多达12比特的量子系统的原因.因此,核磁共振量子处理器在量子信息领域一直扮演着重要角色.本文介绍核磁共振量子计算的基本原理和一些新研究进展.研究的新进展主要包括量子噪声注入技术、量子机器学习在核磁共振平台上的实验演示、高能物理和拓扑序的量子模拟以及核磁共振量子云平台等.最后讨论了液态核磁共振的发展前景和发展瓶颈,并对未来发展方向提出展望.  相似文献   

19.
Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号