共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the use of a smoothly tunable, single-frequency continuous-wave optical parametric oscillator (OPO) for high-resolution spectroscopy. The OPO is based on potassium titanyl phosphate and is resonant for both signal and idler fields, resulting in a device with a very low pump power threshold of 30 mW. The frequency-selective nature of the doubly resonant oscillator ensures that the signal and idler modes can be tuned across the entire phase-match bandwidth without the need for additional intracavity frequency-selective components. Smooth frequency tuning of the output of the OPO is obtained by tuning of the pump laser. To demonstrate the practicality of our OPO we recorded the absorption spectrum of cesium vapor in the 1-microm spectral region. 相似文献
2.
《Molecular physics》2012,110(17):2103-2109
We present a narrow-linewidth, singly-resonant cw optical parametric oscillator, emitting more than 1 W in the 2.7–4.2?µm range. The OPO is pumped by a narrow linewidth (40?kHz) fibre-laser system and the signal frequency is locked to a high-finesse Fabry–Pérot cavity in order to increase the spectral resolution, thus obtaining a residual linewidth of 70?kHz for the signal. We tested the spectral performance of our OPO on several transitions in the ν1 rovibrational band of CH3I, measuring line intensities and showing sub-Doppler dip detection. 相似文献
3.
Wade C. Eckhoff Roger S. Putnam Shunxi Wang Robert F. Curl Frank K. Tittel 《Applied physics. B, Lasers and optics》1996,63(5):437-441
A new widely tunable source in the infrared for use in high-resolution spectroscopy and trace-gas detection is described. This spectroscopic source is based on Difference Frequency Generation (DFG) in gallium selenide (GaSe) and is continuously tunable in the 8.8–15.0 m wavelength region. Such a DFG source operates at room temperature which makes it a useful alternative to a lead-salt diode-laser- based detection system that requires cryogenic temperatures and numerous individual diode lasers.Prof. F. P. Schäfer on the occasion of his 65th birthday. 相似文献
4.
We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a four-mirror ring cavity. By tuning of the fiber-laser wavelength over 33 nm through an intracavity acousto-optic tunable filter, the OPO idler wavelength is tuned from 3160 to 3500 nm in 330 micros, corresponding to an idler frequency-tuning speed of 28 THz/ms. At a fiber-laser power of 6.6 W at 1074 nm, the singly resonant OPO generates 1.13-W cw idler radiation at 3200 nm. 相似文献
5.
Kovalchuk EV Dekorsy D Lvovsky AI Braxmaier C Mlynek J Peters A Schiller S 《Optics letters》2001,26(18):1430-1432
We present a reliable, narrow-linewidth (100-kHz) continous-wave optical parametric oscillator (OPO) suitable for high-resolution spectroscopy applications. The singly resonant OPO with a resonated pump is based on periodically poled lithium niobate crystal and features a specially designed intracavity etalon, which permits precise tuning to any desired wavelength in a wide range. We demonstrate Doppler-free spectroscopy of a rovibrational transition of methane at 3.39 mum. 相似文献
6.
We report on a diode-laser pumped cw optical parametric oscillator (OPO) based on quasi-phase-matched periodically poled lithium tantalate. Pumped by the 2.3-W single-frequency, nearly diffraction-limited 925-nm output of an InGaAs diode master-oscillator power amplifier, the pump and signal resonant OPO generates a single-frequency idler wave with an output of as much as 244 mW. The wavelengths of the signal and idler waves are widely tunable in the range 1.55-2.3mum by use of different poling periods (27.3 to 27.9mum) and by variation of the crystal temperature in the range 70-190 degrees C. 相似文献
7.
Stable, high-power, second-harmonic-generation (SHG) of a compact CW Ytterbium (Yb) fiber laser at 1064 nm into the green
and its use as a pump source for CW singly-resonant optical parametric oscillator (SRO) is demonstrated. Using a simple single-pass
SHG configuration in MgO:sPPLT, as much as 9.6 W of single-frequency green radiation at 532 nm is generated from 30 W of fundamental
power at a conversion efficiency of 32.7% in a Gaussian spatial profile with a beam quality factor of M
2 < 1.3. Thermal effects have been investigated at different fundamental power levels and various thermal management schemes
are employed to maximize the second-harmonic power. The green source is successfully deployed to pump a CW SRO tunable over
855–1408 nm, generating up to 2.1 W of idler at 1168 nm. The peak-to-peak idler power stability is better than 10.7% over
40 min, with beam quality factor M
2 < 1.26 for the idler and M
2 < 1.52 for the signal. 相似文献
8.
Gross P Klein ME Walde T Boller KJ Auerbach M Wessels P Fallnich C 《Optics letters》2002,27(6):418-420
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm. 相似文献
9.
We describe a compact all-solid-state continuous-wave singly resonant optical parametric oscillator (SRO) with a minimal pump-power requirement. The SRO is based on periodically poled LiNbO(3) as the nonlinear material and is pumped by a 1-W diode-pumped Nd:YVO(4) minilaser at 1.064 microm . By exploiting the intracavity pumping technique in a 50-mm crystal, we have achieved SRO operation threshold at a diode pump power of only 310 mW.At 1 W of input diode power, the SRO delivers 70 mW of output power in the nonresonant idler at 3.66 microm , at a photon conversion efficiency of 55%. Multiparameter tuning of the SRO yields a signal wavelength range from 1.45 to 1.60 microm and an idler wavelength range from 3.16 to 4.02 microm in the mid infrared. The device is characterized by robust turnkey operation and long-term amplitude-stable performance. 相似文献
10.
J. Peltola M. Vainio V. Ulvila M. Siltanen M. Metsälä L. Halonen 《Applied physics. B, Lasers and optics》2012,107(3):839-847
We demonstrate an off-axis cavity ring-down spectroscopy system, which uses a mid-infrared continuous-wave optical parametric oscillator as a light source. Off-axis injection with re-entrant configuration of the ring-down cavity is used to achieve high spectral resolution while maintaining high measurement speed. This makes the setup suitable for sensitive molecular spectroscopy in the mid-infrared region, particularly for studies that require high temporal resolution. Formaldehyde (H2CO) absorption spectrum at 3.4 µm is measured using the off-axis re-entrant cavity ring-down spectrometer. 相似文献
11.
An injection-seeded optical parametric oscillator (OPO), based on periodically poled KTiOPO4 and pumped by a frequency-doubled, nanosecond-pulsed Nd:YAG laser, generates continuously tunable, single-longitudinal-mode, pulsed output at approximately 842 nm for high-resolution spectroscopy. Optical-heterodyne measurements show that the OPO frequency chirp increases linearly with detuning from the free-running (unseeded) OPO frequency and can be maintained as low as 10 MHz. Other factors affecting chirp are identified. 相似文献
12.
Microchip laser-pumped continuous-wave doubly resonant optical parametric oscillator 总被引:1,自引:0,他引:1
We report what we believe to be the first use of a multilongitudinal-mode frequency-doubled microchip laser to pump a doubly resonant optical parametric oscillator (OPO). This compact OPO is based on potassium titanyl phosphate (KTP) and operates with a low pump power threshold of 35 mW. The OPO output consists of a single pair of signal and idler modes even though it is pumped with a multilongitudinal-mode pump laser. We achieved smooth tuning (1.7 GHz) of the output frequencies by temperature tuning of the pump laser. 相似文献
13.
We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. 相似文献
14.
The spectral output of a nanosecond dual-cavity doubly resonant optical parametric oscillator has been investigated versus the relative length of the signal and idler cavities. Regions of stable single-frequency operation are determined by use of a type II phase-matched KTP crystal and compared with the predictions of a mode-overlap model. A wide mode-hop-free tuning range is obtained over 40 GHz, limited only by piezoelectric biases. Furthermore, discrete tuning is investigated over the full parametric gain curve. For demonstration purposes, experiments are performed in the domain that is most inclined to multifrequency emission, i.e., near degeneracy. 相似文献
15.
The phase-matching condition in a fiber is discussed. A balance among the different orders of fiber dispersion can be found to achieve a widely tuning modulation instability gain for pumping around the normal dispersion regime. Three coupled nonlinear wave equations are used to simulate the femtosecond fiber optical parametric oscillator. The numerical results show that, through appropriate choice of dispersion, femtosecond pulses with a 180-nm tunable range can be generated when pump wavelength near a fiber’s zero-dispersion wavelength is tuned only 7 nm. Further tuning is limited by the walk-off between the pump and the signal pulses. 相似文献
16.
F. Kühnemann K. Schneider A. Hecker A.A.E. Martis W. Urban S. Schiller J. Mlynek 《Applied physics. B, Lasers and optics》1998,66(6):741-745
2 H6) at 3.34 μm using a widely tunable cw single-frequency optical parametric oscillator. The high frequency and power stability
and the continuous tunability of the parametric oscillator make it ideally suited for this application. Detection sensitivities
of 0.5 ppb for ethane are obtained, which is comparable to the best results previously obtained with intracavity detection
using line-tunable CO overtone lasers. The flexibility and compact size of cw single-frequency parametric oscillators can
lead to portable photoacoustic trace-gas detection systems for environmental monitoring and process control.
Received: 28 January 1998/Revised version: 9 April 1998 相似文献
17.
Doppler-broadened atomic and molecular spectra were observed with a one octave tunable, continuous-wave, doubly resonant, monolithic optical parametric oscillator (OPO) using 5% MgO-doped LiNbO3 as a non-linear crystal with a birefringent phase-matching configuration. By tuning the frequency of a pump laser, longitudinal mode selection over 20 successive modes, corresponding to a 60 GHz span, was possible, owing to the simple structure of the monolithic OPO. Continuous frequency tuning was achieved using an external waveguide-type electrooptic phase modulator (EOM). By changing the modulation frequency of the EOM, frequency tuning of the optical sidebands over 12 GHz was possible, which is larger than the one free spectral range of the monolithic cavity of 3 GHz. We could observe the Cs-D1 (894 nm), Cs-D2 (852 nm), Rb-D1 (795 nm), acetylene R9 (1520 nm) and P9 (1530 nm) transitions with the single monolithic OPO. 相似文献
18.
介绍了基于光纤激光器泵浦的光学参量振荡器发展现状及其在定向红外干扰技术中的应用前景,对定向红外干扰技术的一些基本原理进行了讨论。利用自研的一台基于光纤激光器泵浦的连续波光学参量振荡器,通过周期调谐的方式分别实现3.414,3.630和3.820 m的瓦级中红外激光输出。采用这3个波长的激光对中红外热像仪进行了干扰原理性实验。对比实验结果可以得出:对于3.820 m波长的中红外激光,当其辐照的HgCdTe探测器前功率密度大于10 W/cm2量级时,在传输750 m距离后,热像仪实现饱和效果并且非饱和区域图像灰度级发生较大变化,达到了掩盖有用信号的目的。 相似文献
19.
介绍了基于光纤激光器泵浦的光学参量振荡器发展现状及其在定向红外干扰技术中的应用前景,对定向红外干扰技术的一些基本原理进行了讨论。利用自研的一台基于光纤激光器泵浦的连续波光学参量振荡器,通过周期调谐的方式分别实现3.414,3.630和3.820 m的瓦级中红外激光输出。采用这3个波长的激光对中红外热像仪进行了干扰原理性实验。对比实验结果可以得出:对于3.820 m波长的中红外激光,当其辐照的HgCdTe探测器前功率密度大于10 W/cm2量级时,在传输750 m距离后,热像仪实现饱和效果并且非饱和区域图像灰度级发生较大变化,达到了掩盖有用信号的目的。 相似文献
20.
W. D. Kulatilaka T. N. Anderson T. L. Bougher R. P. Lucht 《Applied physics. B, Lasers and optics》2005,80(6):669-680
We report the development and application of pulsed optical parametric generator (OPG) and optical parametric oscillator (OPO) systems that are injection seeded with near-infrared distributed feedback diode lasers. The OPG is injection seeded at the idler wavelength without the use of a resonant cavity. Two counter-rotating, beta-barium-borate (β-BBO) crystals are used in the OPG. These crystals are pumped by the third harmonic, 355-nm output of an injection-seeded Nd:YAG laser. An OPO version of the system has also been developed by placing two flat mirrors around the two β-BBO crystals to form a feedback cavity at the signal wavelength. The OPO cavity length is not actively controlled. The output signal beam from the OPG or OPO is amplified using an optical parametric amplifier (OPA) stage with four β-BBO crystals. The frequency bandwidths of the signal and idler laser radiation from OPG/OPA and OPO/OPA systems have been determined to be slightly greater than 200 MHz. The temporal pulses from each system are smooth and near-Gaussian. High-resolution optical absorption measurements of acetylene (C2H2) were performed as another check of the frequency spectrum of the idler beam. The frequency-doubled signal output of the OPO/OPA system was used to perform high-resolution, single-photon, laser-induced fluorescence (LIF) spectroscopic studies of the (0,0) vibrational band of the A
2Σ+−X
2Π electronic transition of nitric oxide (NO) at low pressure. Excellent agreement was obtained between the theory and the experiment. The signal output of the OPG/OPA system was also used for sub-Doppler, two-photon LIF spectroscopic studies of the same vibration–rotation manifold of NO.This revised version was published online in August 2005 with a corrected cover date. 相似文献