首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this paper, we study the torsion subgroup and rank of elliptic curves for the subfamilies of \(E_{m,p} : y^2=x^3-m^2x+p^2\), where m is a positive integer and p is a prime. We prove that for any prime p, the torsion subgroup of \(E_{m,p}(\mathbb {Q})\) is trivial for both the cases {\(m\ge 1\), \(m\not \equiv 0\pmod 3\)} and {\(m\ge 1\), \(m \equiv 0 \pmod 3\), with \(gcd(m,p)=1\)}. We also show that given any odd prime p and for any positive integer m with \(m\not \equiv 0\pmod 3\) and \(m\equiv 2\pmod {32}\), the lower bound for the rank of \(E_{m,p}(\mathbb {Q})\) is 2. Finally, we find curves of rank 9 in this family.  相似文献   

2.
A partial \((k-1)\)-spread in \({\text {PG}}(n-1,q)\) is a collection of \((k-1)\)-dimensional subspaces with trivial intersection. So far, the maximum size of a partial \((k-1)\)-spread in \({\text {PG}}(n-1,q)\) was known for the cases \(n\equiv 0\pmod k\), \(n\equiv 1\pmod k\), and \(n\equiv 2\pmod k\) with the additional requirements \(q=2\) and \(k=3\). We completely resolve the case \(n\equiv 2\pmod k\) for the binary case \(q=2\).  相似文献   

3.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

4.
Let \(F\simeq {{\mathrm{GF}}}(p^n)\) be a finite field of characteristic p and \(p_k\) and \(p_\ell \) be power functions on F defined by \(p_k(x)=x^k\) and \(p_\ell (x)=x^\ell \) respectively. We show, that \(p_k\) and \(p_\ell \) are CCZ equivalent, if and only if there exists a positive integer \(0\le a< n\), such that \(\ell \equiv p^a k \pmod {p^n-1}\) or \(k\ell \equiv p^a \pmod {p^n-1}\).  相似文献   

5.
Let q be a prime power and let \({\mathbb {F}}_q\) be a finite field with q elements. This paper discusses the explicit factorizations of cyclotomic polynomials over \(\mathbb {F}_q\). Previously, it has been shown that to obtain the factorizations of the \(2^{n}r\)th cyclotomic polynomials, one only need to solve the factorizations of a finite number of cyclotomic polynomials. This paper shows that with an additional condition that \(q\equiv 1 \pmod p\), the result can be generalized to the \(p^{n}r\)th cyclotomic polynomials, where p is an arbitrary odd prime. Applying this result we discuss the factorization of cyclotomic polynomials over finite fields. As examples we give the explicit factorizations of the \(3^{n}\)th, \(3^{n}5\)th and \(3^{n}7\)th cyclotomic polynomials.  相似文献   

6.
A generalized strong external difference family (briefly \((v, m; k_1,\dots ,k_m; \lambda _1,\dots ,\lambda _m)\)-GSEDF) was introduced by Paterson and Stinson in 2016. In this paper, we give some nonexistence results for GSEDFs. In particular, we prove that a \((v, 3;k_1,k_2,k_3; \lambda _1,\lambda _2,\lambda _3)\)-GSEDF does not exist when \(k_1+k_2+k_3< v\). We also give a first recursive construction for GSEDFs and prove that if there is a \((v,2;2\lambda ,\frac{v-1}{2};\lambda ,\lambda )\)-GSEDF, then there is a \((vt,2;4\lambda ,\frac{vt-1}{2};2\lambda ,2\lambda )\)-GSEDF with \(v>1\), \(t>1\) and \(v\equiv t\equiv 1\pmod 2\). Then we use it to obtain some new GSEDFs for \(m=2\). In particular, for any prime power q with \(q\equiv 1\pmod 4\), we show that there exists a \((qt, 2;(q-1)2^{n-1},\frac{qt-1}{2};(q-1)2^{n-2},(q-1)2^{n-2})\)-GSEDF, where \(t=p_1p_2\dots p_n\), \(p_i>1\), \(1\le i\le n\), \(p_1, p_2,\dots ,p_n\) are odd integers.  相似文献   

7.
Let \(b_{k}(n)\) denote the number of k-regular partitions of n. In this paper, we prove Ramanujan-type congruences modulo powers of 7 for \(b_{7}(n)\) and \(b_{49}(n)\). For example, for all \(j\ge 1\) and \(n\ge 0\), we prove that
$$\begin{aligned} b_{7}\Bigg (7^{2j-1}n+\frac{3\cdot 7^{2j-1}-1}{4}\Bigg )\equiv 0\pmod {7^{j}} \end{aligned}$$
and
$$\begin{aligned} b_{49}\Big (7^{j}n+7^{j}-2\Big )\equiv 0\pmod {7^{j}}. \end{aligned}$$
  相似文献   

8.
A decomposition of the blocks of an \(\textsf {STS}(v)\) into partial parallel classes of size m is equivalent to a Kirkman signal set \(\textsf {KSS}(v,m)\). We give decompositions of \(\textsf {STS}(4v-3)\) into classes of size \(v-1\) when \(v \equiv 3 \pmod {6}\), \(v \not = 3\). We also give decompositions of \(\textsf {STS}(v)\) into classes of various sizes when v is a product of two arbitrary integers that are both congruent to \(3 \pmod {6}\). These results produce new families of \(\textsf {KSS}(v,m)\).  相似文献   

9.
For a non-negative integer \(n\), let \(E_n\) be the \(n\) th Euler number. In this note, for any positive integer \(n\), we prove the following congruences:
$$\begin{aligned} {\left\{ \begin{array}{ll} E_{4n} \equiv 380n-375 \pmod {10^3}, \\ E_{4n+2} \equiv -460n+399 \pmod {10^3}. \end{array}\right. } \end{aligned}$$
Our proof is based on induction on \(n\) and elementary direct calculations.
  相似文献   

10.
Define \(g_n(x)=\sum _{k=0}^n\left( {\begin{array}{c}n\\ k\end{array}}\right) ^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) x^k\) for \(n=0,1,2,\ldots \). Those numbers \(g_n=g_n(1)\) are closely related to Apéry numbers and Franel numbers. In this paper we establish some fundamental congruences involving \(g_n(x)\). For example, for any prime \(p>5\) we have
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{g_k(-1)}{k^2}\equiv 0\pmod p. \end{aligned}$$
This is similar to Wolstenholme’s classical congruences
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{1}{k}\equiv 0\pmod {p^2}\quad \text {and}\quad \sum _{k=1}^{p-1}\frac{1}{k^2}\equiv 0\pmod p \end{aligned}$$
for any prime \(p>3\).
  相似文献   

11.
We estimate exponential sums over a non-homogenous Beatty sequence with restriction on strongly q-additive functions. We then apply our result in a few special cases to obtain an asymptotic formula for the number of primes \(p=\lfloor \alpha n +\beta \rfloor \) and \(f(p)\equiv a (\mathrm{mod\,}b)\), with \(n\ge N \), where \(\alpha \), \(\beta \) are real numbers and f is a strongly q-additive function (for example, the sum of digits function in base q is a strongly q-additive function). We also prove that for any fixed integer \(k\ge 3 \), all sufficiently large \(N\equiv k (\mathrm{mod\,}2) \) could be represented as a sum of k prime numbers from a Beatty sequence with restriction on strongly q-additive functions.  相似文献   

12.
Let \(b_{\ell }(n)\) denote the number of \(\ell \)-regular partitions of n. By employing the modular equation of seventh order, we establish the following congruence for \(b_{7}(n)\) modulo powers of 7: for \(n\ge 0\) and \(j\ge 1\),
$$\begin{aligned} b_{7}\left( 7^{2j-1}n+\frac{3\cdot 7^{2j}-1}{4}\right) \equiv 0 \pmod {7^j}. \end{aligned}$$
We also find some infinite families of congruences modulo 2 and 7 satisfied by \(b_{7}(n)\).
  相似文献   

13.
It has become common knowledge that constructing q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\) is significantly more difficult than constructing those with minimum distance less than or equal to \(q/2+1\). Despite of various constructions of q-ary quantum MDS codes, all known q-ary quantum MDS codes have minimum distance bounded by \(q/2+1\) except for some lengths. The purpose of the current paper is to provide some new q-ary quantum MDS codes with minimum distance bigger than \(q/2+1\). In this paper, we provide several classes of quantum MDS codes with minimum distance bigger than \(q/2+1\). For instance, some examples in these classes include q-ary \([n,n-2k, k+1]\)-quantum MDS codes for cases: (i) \(q\equiv -1\bmod {5}, n=(q^2+4)/5\) and \(1\le k\le (3q-2)/5\); (ii) \(q\equiv -1\bmod {7}, n=(q^2+6)/7\) and \(1\le k\le (4q-3)/7\); (iii) \(2|q, q\equiv -1\bmod {3}, n=2(q^2-1)/3\) and \(1\le k\le (2q-1)/3\); and (iv) \(2|q, q\equiv -1\bmod {5}, n=2(q^2-1)/5\) and \(1\le k\le (3q-2)/5\).  相似文献   

14.
Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access network for 2-dimensional image transmission. There is a one-to-one correspondence between an \((m, n, w, \lambda )\)-OOSPC and a \((\lambda +1)\)-(mnw, 1) packing design admitting an automorphism group isomorphic to \(\mathbb {Z}_m\times \mathbb {Z}_n\). In 2010, Sawa gave a construction of an (mn, 4, 2)-OOSPC from a one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) which contains a unique element of order 2. In this paper, we study the existence of one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) having three elements of order 2. It is proved that there is a one-factor in the Köhler graph of \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\) relative to the Sylow 2-subgroup if there is an S-cyclic Steiner quadruple system of order 2p, where \(p\equiv 5\pmod {12}\) is a prime and \(1\le \epsilon ,\epsilon '\le 2\). Using this one-factor, we construct a strictly \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\)-invariant regular \(G^*(p,2^{\epsilon +\epsilon '},4,3)\) relative to the Sylow 2-subgroup. By using the known S-cyclic SQS(2p) and a recursive construction for strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant regular G-designs, we construct more strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant 3-(mn, 4, 1) packing designs. Consequently, there is an optimal \((2^{\epsilon }m,2^{\epsilon '}n,4,2)\)-OOSPC for any \(\epsilon ,\epsilon '\in \{0,1,2\}\) with \(\epsilon +\epsilon '>0\) and an optimal (6m, 6n, 4, 2)-OOSPC where mn are odd integers whose all prime divisors from the set \(\{p\equiv 5\pmod {12}:p\) is a prime, \(p<\)1,500,000}.  相似文献   

15.
There has been much research on \((p^{a},p^{b},p^{a},p^{a-b})\) relative difference sets with p a prime, while there are only a few results on (mnnmnm) relative difference sets with \(\text {gcd}(m,n)=1\). The non-existence results on (mnnmnm) relative difference sets with \(\text {gcd}(m,n)=1\) have only been obtained for the following five cases: (1) \(m=p,\ n=q,\ p>q\); (2) \(m=pq,\ n=3,\ p,q>3\); (3) \(m=4,\ n=p\); (4) \(m=2\) and (5) \(n=p\), where pq are distinct odd primes. For the existence results, there are only four constructions of semi-regular relative difference sets in groups of size not a prime power with the forbidden subgroup having size larger than 2. In this paper, we present some more non-existence results on (mnnmnm) relative difference sets with \(\text {gcd}(m,n)=1\). In particular, our result is a generalization of the main result of Hiramine’s work (J Comb Theory Ser A 117(7):996–1003, 2010). Meanwhile, we give a construction of non-abelian (16qq, 16q, 16) relative difference sets, where q is a prime power with \(q\equiv 1\pmod {4}\) and \(q>4.2\times 10^{8}\). This is the third known infinite classes of non-abelian semi-regular relative difference sets.  相似文献   

16.
Let \(\overline{p}(n)\) denote the number of overpartitions of n. Recently, Mahlburg showed that \(\overline{p}(n) \equiv 0 \pmod {64}\) and Kim showed that \(\overline{p}(n) \equiv 0 \pmod {128}\) for almost all integers n. In this paper, with the help of some ternary quadratic forms, we prove that \(\overline{p}(n) \equiv 0 \pmod {256}\) for almost all integers n, which was conjectured by Mahlburg.  相似文献   

17.
For \(n\ge 1\), the nth Ramanujan prime is defined as the least positive integer \(R_{n}\) such that for all \(x\ge R_{n}\), the interval \((\frac{x}{2}, x]\) has at least n primes. Let \(p_{i}\) be the ith prime and \(R_{n}=p_{s}\). Sondow, Laishram, and other scholars gave a series of upper bounds of s. In this paper we establish several results giving estimates of upper and lower bounds of Ramanujan primes. Using these estimates, we discuss a conjecture on Ramanujan primes of Sondow–Nicholson–Noe and prove that if \(n>10^{300}\), then \(\pi (R_{mn})\le m\pi (R_{n})\) for \(m\ge 1\).  相似文献   

18.
A pure Mendelsohn triple system of order v, denoted by PMTS(v), is a pair \((X,\mathcal {B})\) where X is a v-set and \(\mathcal {B}\) is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of \(\mathcal {B}\) and if \(\langle a,b,c\rangle \in \mathcal {B}\) implies \(\langle c,b,a\rangle \notin \mathcal {B}\). An overlarge set of PMTS(v), denoted by OLPMTS(v), is a collection \(\{(Y{\setminus }\{y_i\},{\mathcal {A}}_i)\}_i\), where Y is a \((v+1)\)-set, \(y_i\in Y\), each \((Y{\setminus }\{y_i\},{\mathcal {A}}_i)\) is a PMTS(v) and these \({\mathcal {A}}_i\)s form a partition of all cyclic triples on Y. It is shown in [3] that there exists an OLPMTS(v) for \(v\equiv 1,3\) (mod 6), \(v>3\), or \(v \equiv 0,4\) (mod 12). In this paper, we shall discuss the existence problem of OLPMTS(v)s for \(v\equiv 6,10\) (mod 12) and get the following conclusion: there exists an OLPMTS(v) if and only if \(v\equiv 0,1\) (mod 3), \(v>3\) and \(v\ne 6\).  相似文献   

19.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

20.
The notion of broken k-diamond partitions was introduced by Andrews and Paule in 2007. For a fixed positive integer k, let \(\Delta _k(n)\) denote the number of broken k-diamond partitions of n. Recently, Paule and Radu conjectured two relations on \(\Delta _5(n)\) which were proved by Xiong and Jameson, respectively. In this paper, employing these relations, we prove that, for any prime p with \(p\equiv 1\ (\mathrm{mod}\ 4)\), there exists an integer \(\lambda (p)\in \{2,\ 3,\ 5,\ 6,\ 11\}\) such that, for \(n, \alpha \ge 0\), if \(p\not \mid (2n+1)\), then
$$\begin{aligned} \Delta _5\left( 11p^{\lambda (p)(\alpha +1)-1} n+\frac{11p^{\lambda (p)(\alpha +1)-1}+1}{2}\right) \equiv 0\ (\mathrm{mod}\ 11). \end{aligned}$$
Moreover, some non-standard congruences modulo 11 for \(\Delta _5(n)\) are deduced. For example, we prove that, for \(\alpha \ge 0\), \(\Delta _5\left( \frac{11\times 5^{5\alpha }+1}{2}\right) \equiv 7\ (\mathrm{mod}\ 11)\).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号