首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work, a mathematical model of predator–prey ecological interaction with infected prey is investigated. A saturation incidence function is used to model the behavioral change of the susceptible individuals when their number increases or due to the crowding effect of the infected individuals [V. Capasso, G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model, Math. Biosci. 42 (1978) 41–61]. Stability criteria for the infection-free and the endemic equilibria are deduced in terms of system parameters. The basic model is then modified to incorporate a time delay, describing a latency period. Stability and bifurcation analysis of the resulting delay differential equation model is carried out and ranges of the delay inducing stability and as well as instability for the system are found. Finally, a stability analysis of the bifurcating solutions is performed and the criteria for subcritical and supercritical Hopf bifurcation derived. The existence of a delay interval that preserves the stability of periodic orbits is demonstrated. The analysis emphasizes the importance of differential predation and a latency period in controlling disease dynamics.  相似文献   

2.
In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov–LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence.  相似文献   

3.
A predator-prey system with disease in the prey is considered. Assume that the incidence rate is nonlinear, we analyse the boundedness of solutions and local stability of equilibria, by using bifurcation methods and techniques, we study Bogdanov-Takens bifurcation near a boundary equilibrium, and obtain a saddle-node bifurcation curve, a Hopf bifurcation curve and a homoclinic bifurcation curve. The Hopf bifurcation and generalized Hopf bifurcation near the positive equilibrium is analyzed, one or two limit cycles is also discussed.  相似文献   

4.
A diffusive Holling-Tanner predator-prey model with no-flux boundary condition is considered, and it is proved that the unique constant equilibrium is globally asymptotically stable under a new simpler parameter condition.  相似文献   

5.
6.
In this paper, an HIV-1 infection model with a saturation infection rate and an intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles is investigated. By analyzing the characteristic equations, the local stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is established. By using suitable Lyapunov functionals and the LaSalle invariant principle, it is proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium is globally asymptotically stable; if the basic reproduction ratio is greater than unity, the chronic-infection equilibrium is globally asymptotically stable.  相似文献   

7.
通过假设捕食系统中疾病只在捕食者种群中传播,被传染的易感者经过一段潜伏期后才具有传染性,染病者康复后对该病具有永久免疫力,建立了一类具有垂直传播的捕食系统的传染病模型(SEIR),运用极限系统理论,分两种情形讨论了系统平衡点的存在性及局部稳定性,利用Liapunov函数和二次复合矩阵等方法,得到了平衡点全局渐近稳定的条件.  相似文献   

8.
In this paper, an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence is proposed. In the model, we consider the infection age of infectious individuals and the biological age of pathogen in the environment. It is verified that the global dynamics of the model is completely determined by the basic reproduction number. Asymptotic smoothness is verified as a necessary argument. By analyzing corresponding characteristic equations, we discuss the local stability of each of feasible steady states. Uniform persistence is shown by using the persistence theory for infinite dimensional dynamical system. The global stability of each of feasible steady states is established by using suitable Lyapunov functionals and LaSalle’s invariance principle. Numerical simulations are carried out to illustrate the theoretical results.  相似文献   

9.
A delayed ratio-dependent predator-prey model with Gompertz growth for prey is investigated. The local stability of a predator-extinction equilibrium and a coexistence equilibrium is discussed. Furthermore, the existence of Hopf bifurcation at the coexistence equilibrium is established. By constructing a Lyapunov functional, sufficient conditions are obtained for the global stability of the coexistence equilibrium.  相似文献   

10.
In this paper, a stage-structured epidemic model with a nonlinear incidence with a factor Sp is investigated. By using limit theory of differential equations and Theorem of Busenberg and van den Driessche, global dynamics of the model is rigorously established. We prove that if the basic reproduction number R0 is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out; if R0 is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable. Numerical simulations support our analytical results and illustrate the effect of p on the dynamic behavior of the model.  相似文献   

11.
In this paper, a diffusive predator-prey system with nonlocal maturation delay is investigated. By analyzing the corresponding characteristic equations, the local stability of each of uniform steady states of the system is discussed. Sufficient conditions are derived for the global stability of the positive steady state and the semi-trivial steady state of the system by using the method of upper–lower solutions and its associated monotone iteration scheme, respectively. The existence of travelling wave solution of the system is established by using the geometric singular perturbation theory. Numerical simulations are carried out to illustrate the theoretical results.  相似文献   

12.
In this paper, the dynamical behavior of an eco-epidemiological model with distributed delay is studied. Sufficient conditions for the asymptotical stability of all the equilibria are obtained. We prove that there exists a threshold value of the conversion rate h beyond which the positive equilibrium bifurcates towards a periodic solution. We further analyze the orbital stability of the periodic orbits arising from bifurcation by applying Poore’s condition. Numerical simulation with some hypothetical sets of data has been done to support the analytical findings.  相似文献   

13.
This paper deals with the dynamics of a predator-prey model with Hassell-Varley-Holling functional response. First, we show that the predator coexists with prey if and only if predator's growth ability is greater than its death rate. Second, using a blow-up technique, we prove that the origin equilibrium point is repelling and extinction of both predator and prey populations is impossible. Third, the local and global stability of the positive steady state coincide when the predator interference is large. Finally, for a typical biological case, we show instability of the positive equilibrium implies global stability of the limit cycle. Numerical simulations are carried out for a hypothetical set of parameter values to substantiate our analytical findings.  相似文献   

14.
研究了一类具有扩散和Beddington-DeAngelis反应函数的病毒模型.通过构造Lyapunov函数,证明了模型的感染平衡点是全局渐近稳定的.  相似文献   

15.
In this paper, by applying nonstandard finite difference scheme, we propose a discrete multigroup Susceptible‐Infective‐Removed (SIR) model with nonlinear incidence rate. Using Lyapunov functions, it is shown that the global dynamics of this model are completely determined by the basic reproduction number . If , then the disease‐free equilibrium is globally asymptotically stable; if , then there exists a unique endemic equilibrium and it is globally asymptotically stable. Example and numerical simulations are presented to illustrate the results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a delayed Susceptible‐Exposed‐Infectious‐Susceptible (SEIS) infectious disease model with logistic growth and saturation incidence is investigated, where the time delay describes the latent period of the disease. By analyzing corresponding characteristic equations, the local stability of a disease‐free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using the persistence theory for infinite dimensional dynamic systems, it is proved that if the basic reproduction number is greater than unity, the system is permanent. By means of suitable Lyapunov functionals and LaSalle's invariance principle, sufficient conditions are obtained for the global stability of the disease‐free equilibrium and the endemic equilibrium, respectively. Numerical simulations are carried out to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we consider the global dynamics of the S(E)IS model with delays denoting an incubation time. By constructing a Lyapunov functional, we prove stability of a disease‐free equilibrium E0 under a condition different from that in the recent paper. Then we claim that R0≤1 is a necessary and sufficient condition under which E0 is globally asymptotically stable. We also propose a discrete model preserving positivity and global stability of the same equilibria as the continuous model with distributed delays, by means of discrete analogs of the Lyapunov functional.  相似文献   

18.
19.
In this paper, we investigate a disease transmission model of SIRS type with latent period τ?0 and the specific nonmonotone incidence rate, namely, . For the basic reproduction number R0>1, applying monotone iterative techniques, we establish sufficient conditions for the global asymptotic stability of endemic equilibrium of system which become partial answers to the open problem in [Hai-Feng Huo, Zhan-Ping Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 459-468]. Moreover, combining both monotone iterative techniques and the Lyapunov functional techniques to an SIR model by perturbation, we derive another type of sufficient conditions for the global asymptotic stability of the endemic equilibrium.  相似文献   

20.
In this paper, we introduce a basic reproduction number for a multigroup SEIR model with nonlinear incidence of infection and nonlinear removal functions between compartments. Then, we establish that global dynamics are completely determined by the basic reproduction number R0. It shows that, the basic reproduction number R0 is a global threshold parameter in the sense that if it is less than or equal to one, the disease free equilibrium is globally stable and the disease dies out; whereas if it is larger than one, there is a unique endemic equilibrium which is globally stable and thus the disease persists in the population. Finally, two numerical examples are also included to illustrate the effectiveness of the proposed result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号