首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
低噪声微波在冷原子光钟、光子雷达、大科学装置远程同步等领域具有重要的应用价值.本文介绍了一种基于光学-微波相位探测技术的低噪声微波产生方案,利用光纤环路光学-微波鉴相器,将超稳激光的频率稳定度相干传递至介质振荡器.实验采用梳齿相位参考至超稳激光的窄线宽掺铒光纤飞秒光学频率梳,结合光纤环路光学-微波鉴相器和精密锁相装置,将7 GHz介质振荡器同步至光频梳重复频率的高次谐波,同步后的光脉冲序列与微波信号的剩余相位噪声为–100 d Bc/Hz@1 Hz,定时抖动为8.6 fs [1 Hz—1.5 MHz];通过搭建两套低噪声微波产生系统,测得7 GHz微波的剩余相位噪声为–90 d Bc/Hz@1 Hz,对应的频率稳定度为4.8×10–15@1 s.该研究结果对基于光学相干分频的低噪声微波产生提供了一种新思路.  相似文献   

2.
本文设计了一种应用于铷原子频标的小型化低噪声石英晶体振荡器,其振荡电路采用柯尔匹兹并联形式和SC切晶体谐振器.基于Leeson模型对石英晶体振荡器相位噪声进行分析,并利用ADS射频仿真软件对振荡电路进行仿真模拟,为振荡器设计与调试提供指导.最终实现体积为22 mm×28.5 mm×13 mm低噪声晶体振荡器,它具有良好的相位噪声特性,其近端相噪为-102.7 dBc/Hz@1 Hz、远端相噪为-164.2 dBc/Hz@10 kHz,且实测短期频率稳定度为1.73×10-12/s.  相似文献   

3.
设计了一款用于小型化铷原子钟锁相倍频器的窄带VCO(压控振荡器)电路.振荡电路采用了稳定性好的克拉泼电路方案.应用仿真软件对该电路进行仿真分析和优化设计.最终设计出的VCO电路主要性能指标为:输出频率范围为440 MHz~470 MHz,频率调谐灵敏度为18 MHz/V,二次谐波抑制度为-15 d Bc,由其构成的锁相倍频器实现了低相噪设计要求,使小型化铷原子钟具备了实现高的频率稳定度潜力.  相似文献   

4.
A polarization-maintained coupled optoelectronic oscillator(COEO) with its performance significantly improved by a short-length unpumped erbium-doped fiber(EDF) is reported and experimentally investigated.A 10 GHz optical pulse train with a supermode suppression ratio of 61.8 d B and a 10 GHz radio frequency signal with a sidemode suppression ratio of 94 d B and a phase noise of-121.9 d Bc∕Hz at 10 k Hz offset are simultaneously generated. Thanks to saturable absorption of the 1 m unpumped EDF, which introduces relatively large cavity loss to the undesired modes and noise, the supermode suppression ratio and the phase noise are improved by 9.4 and 7.9 d B, respectively.  相似文献   

5.
设计了一种小型球形宽带发射换能器,换能器由正六面体基座、六个压电晶堆和弧形辐射面组成,是一种球形空间对称结构。球形设计使得换能器内部结构紧凑,而且在体积一定的情况下具有最佳的辐射阻,是一种高效的小型大功率无指向性声源。采用有限元方法对换能器进行了优化设计并研制了换能器样品。水池测试结果表明,该换能器样品的工作带宽为2.6 k Hz~5.2 k Hz,最大声源级达到200 d B以上,电声效率50%左右,优质因子FOMm达到36 W/k Hz·kg。  相似文献   

6.
基于金属氧化物薄膜晶体管的高速行集成驱动电路   总被引:1,自引:0,他引:1       下载免费PDF全文
本文提出了一种基于非晶铟锌氧化物薄膜晶体管的高速行集成驱动电路,该电路采用输入级复用的驱动结构,一级输入级驱动三级输出级,不仅减少电路输入级2/3晶体管的数量,实现AMOLED或AMLCD显示屏的窄边框显示,而且输入级的工作频率是输出级的1/3,该结构适用于高速驱动电路.电路内部产生了三次电容耦合效应,每一次电容耦合效应都可以提高相应节点的电压,保证了信号完整传输.输出级采用了一个二极管接法的薄膜晶体管,该薄膜晶体管连接了输出级的控制信号和上拉薄膜晶体管的栅极,利用的每一级输出级输出时所产生的电容耦合效应,增加上拉薄膜晶体管的栅极电压,有效地提高电路输出能力和工作速度.仿真表明电路能够输出脉宽达到4μs速度.最后成功地制作了10级行集成驱动电路,包括10级输入级电路和30级输出级电路,负载为R=10k?和C=100pF,实验结果验证,该电路满足4k×8k显示屏在120 Hz刷新频率下的驱动需求.  相似文献   

7.
针对微电容超声换能器的输出信号特征及检测要求,文中设计了换能器的微弱信号处理电路,包括基于跨阻的微弱电流信号检测和多重反馈带通滤波电路。通过搭建水下测试平台,对电路性能及功能进行实际测试,并进行水下测距实验。实验结果表明,该电路可对微电容超声换能器输出的400 k Hz信号进行检测放大与滤波;电路的线性度为0.18%,滤波电路中心频率为396 k Hz,带宽为55 k Hz。该电路可用于CMUT的接收信号处理并应用于超声测距及成像的前端信号处理。  相似文献   

8.
We demonstrate a simple scheme of 6.835 GHz microwave source based on the sub-sampling phase lock loop(PLL). A dielectric resonant oscillator of 6.8 GHz is directly phase locked to an ultra-low phase noise 100 MHz oven controlled crystal oscillator(OCXO) utilizing the sub-sampling PLL. Then the 6.8 GHz is mixed with 35 MHz from an direct digital synthesizer(DDS) which is also referenced to the 100 MHZ OCXO to generate the final6.835 GHz signal. Benefiting from the sub-sampling PLL, the processes of frequency multiplication, which are usually necessary in the development of a microwave source, are greatly simplified. The architecture of the microwave source is pretty simple. Correspondingly, its power consumption and cost are low. The absolute phase noises of the 6.835 GHz output signal are-47 d Bc/Hz,-77 dBc/Hz,-104 dBc/Hz and-121 dBc/Hz at1 Hz, 10 Hz, 100 Hz and 1 kHz offset frequencies, respectively. The frequency stability limited by the phase noise through the Dick effect is theoretically estimated to be better than 5.0 × 10~(-14)τ~(1/2) when it is used as the local oscillator of the Rb atomic clocks. This low phase noise microwave source can also be used in other experiments of precision measurement physics.  相似文献   

9.
介绍了一种大功率宽带换能器的设计方法,换能器由三个镶拼圆环组成,圆环之间用去耦材料隔振。采用有限元方法仿真圆环振子的电声性能,根据仿真结果优化结构尺寸。运用互辐射理论探讨了整体换能器的性能,研制了样机并进行测试。测试结果表明,换能器在2.8 k Hz~8.0 k Hz工作频带内最大发射响应为148 d B,起伏在±2.5 d B之内,具有较大的发射电压响应和较宽的工作频带。  相似文献   

10.
研究了三量子位和四量子位Heisenberg XY链中的基态纠缠与自旋压缩,给出了纠缠C和自旋压缩参数ξ2的解析表达式.结果表明,当外部磁场B大于某一临界值Bc时,纠缠与自旋压缩等价,即纠缠意味着自旋压缩,反之亦然.对三量子位情形,Bc=J[(4-3γ2)1/2-1];对四量子位情形,Bc可以通过数值方法进行求解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号