首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
中国科学院上海应用物理研究所正在研制一台50周期的低温超导波荡器模型机用于上海同步辐射光源装置,磁体绕组采用NbTi超导线,周期长度16mm,磁间隙9.5mm,运行电流为400A,目标峰值磁场0.67T。磁体储能为7.2kJ。为了保证模型机安全稳定的运行,采用基于有限元方法的数值模拟,将50周期磁体简化为绕组模型并分析其失超过程,根据实验与分析结果提出失超保护设计方案。将50周期磁体的上下两部分作为两段,每段通过失超探测仪进行监测,并通过并联背靠背的冷二极管进行保护。为了使设计尽可能简化并限制磁体端部电压,没有采用主动加热器与引能电阻。  相似文献   

2.
为解决超导波荡器磁体采用G-M制冷机传导冷却温度不均匀的问题,采用以G-M制冷机为冷源、将氦为传热工质冷却超导波荡器。通过采用两台E415制冷机预冷氦气并积液冷却磁体的方式,将氦槽内压力调节至1.6 bar—1.9 bar的工况下,可在制冷机开启55 h后将磁体从室温冷却至4.5 K,在75 h后在氦槽内完成积液50%的目标,并在87 h后将磁体冷却至3.8 K下稳定,磁体与冷头的温差约0.3 K,验证了系统利用氦气冷凝积液作为传热工质并冷却超导波荡器磁体的功能。  相似文献   

3.
为解决超导波荡器磁体采用G-M制冷机传导冷却温度不均匀的问题,采用以G-M制冷机为冷源、将氦为传热工质冷却超导波荡器。通过采用两台E415制冷机预冷氦气并积液冷却磁体的方式,将氦槽内压力调节至1.6 bar—1.9 bar的工况下,可在制冷机开启55 h后将磁体从室温冷却至4.5 K,在75 h后在氦槽内完成积液50%的目标,并在87 h后将磁体冷却至3.8 K下稳定,磁体与冷头的温差约0.3 K,验证了系统利用氦气冷凝积液作为传热工质并冷却超导波荡器磁体的功能。  相似文献   

4.
提出了一种新型的可连续绕线的二代高温超导波荡器磁体。波荡器磁体采用"水平跑道型"无绝缘线圈结构,其周期长度为16 mm,绕线带材的宽度为4 mm,厚度为55μm。利用转向器,波荡器磁体的一个绕线槽中的带材可以被引导至相邻的线槽而达到连续绕线的目的。另外,还对此类三周期的波荡器磁体在不同温区,不同带材宽度和不同磁体间隙的条件下的临界电流密度,垂直于带材的磁场和束流中心轴向磁场等参数进行了计算。  相似文献   

5.
上海同步辐射光源二期工程计划建设一条基于4.05T超导扭摆器的超硬多功能线站。根据用户提出的需求参数,作者开展了超导扭摆器的磁场设计,绕制了两个NbTi螺线管实验线圈,并进行了失超锻炼测试。实验结果表明,实验线圈的临界电流达到了设计要求,所采用的NbTi超导线性能和绕线工艺可以满足下一步的超导扭摆器磁体研制要求。  相似文献   

6.
上海光源二期工程建设计划研制一台多极超导扭摆器用于生物医学的X射线成像及治疗。该多极超导扭摆器由21对NbTi超导线圈组成,磁极气隙为22mm,在储存环束流电子能量为3.5GeV时其特征能量为33keV,覆盖的能量范围为20keV到120keV,可用于K边吸收成像、衍射增强成像、相衬成像、CT和微束放射治疗。文中的主要内容为一个具有21个磁极,周期长度为140mm,气隙中心磁感应强度为4.2T的多极超导扭摆器的磁场设计,包括磁极和线圈的参数设计、端部结构和周期磁场的积分场设计,以及简要的超导线圈应力应变分析。  相似文献   

7.
基于超导直线加速器的X射线自由电子激光(XFEL)是自由电子激光领域未来发展的一个重要方向。介绍了国际上Euro-XFEL及LCLS-II等超导XFEL装置的设计建造现状。在此基础上提出基于一台7GeV超导直线加速器的超导XFEL初步方案,给出主要设计参数,并讨论实现100~1000GW量级峰值输出功率的技术路线,包括提高峰值流强、采用波荡器磁场渐变技术等。  相似文献   

8.
中国科学院上海应用物理研究所成功进行了超导波荡器模拟线圈研制,高速高精度测试平台搭建;并在制冷机直接冷却式小型超导磁体测试平台上完成了失超信号采集,分析了失超信号,得出失超传播相关数据,完成了超导波荡器模拟线圈失超动态过程测试。  相似文献   

9.
用于自由电子激光的光学速调管的设计与测试   总被引:3,自引:3,他引:0  
 详述了用于合肥自由电子激光用的光学速调管的物理设计与测试,以及光学速调管实际运行结果与升级计划。测试结果表明,考虑三维效应的OPERA3D场有限元计算法比解析设计更精确,多周期波荡器中任意周期磁场峰值受该周期外其它周期波荡器磁体的影响小于10%。  相似文献   

10.
介绍了为强流重离子加速器(HIAF)研制的强场超导聚焦螺线管样机的设计。该磁体中心场达到10T,在距离磁体中心260mm处的漏场要求小于240Gs,且保证平方积分场值达到14.2T~2m,由于安装空间的限制,要求尽量缩短磁体长度。为得到符合物理要求的线圈电磁设计,结合全局粒子群算法和局部SLSQP算法,采用Python编写了超导聚焦螺线管的优化设计程序,得到了满足要求的电磁设计方案。为了保证磁体的稳定运行,采用ANSYS对磁体及骨架进行了应力分析,得到了合理的骨架结构设计和关键工艺参数。利用OPERA的QUENCH模块对磁体进行了失超分析,得到了磁体的热点温度、失超电压等参数,确定了失超保护方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号