首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of the anionic surfactants, sodium dodecyl sulfate and sodium oleate, on the formation and properties of silica colloidal nanoparticles were investigated. At a concentration of approximately 1 x 10(-3) M, adsorption of anionic surfactants increased particle size, monodispersity, and negative surface charge density of synthesized silica particles. As uniformity of particle size and particle-particle interactions increase, colloidal photonic crystals readily self-assemble without extensive washing of the synthesized silica nanoparticles. The photonic crystals diffract light in the visible region according to Bragg's law. The assembled colloidal particle arrays exhibit a face-centered cubic structure in dried thin films. This study offers a new approach for producing ordered colloidal silica thin films.  相似文献   

2.
In this paper, we reported the preparation of macroporous Au materials using organic colloidal crystals as templates and their catalytic activity for electroless copper deposition. The poly(styrene-methyl methacrylate-acrylic acid) (P(St-MMA-AA)) copolymer colloids were deposited in an orderly manner onto the silicon surface, together with the infiltration of the Au nanoparticles into the interspaces of the colloids. The formed hybrid colloidal crystal subsequently was sintered at approximately 550 degrees C to remove the organic components fully to obtain a macroporous Au framework with three-dimensional ordered porous structure. The pore diameter was around 310 nm and almost monodisperse. It was demonstrated that the macroporous Au materials exhibit catalytic activity and can induce electroless copper deposition.  相似文献   

3.
Cristobalite with ordered interstitial dual-sized mesopores was synthesized through the crystallization of silica colloidal crystals composed of monodispersed amorphous silica nanoparticles. An aqueous solution containing both a flux (Na2O) and a carbon precursor (an aqueous low-molecular weight phenolic resin) was infiltrated into the interstices of silica colloidal crystals. The organic fraction in the nanocomposite was further polymerized and subsequently carbonized in an Ar flow at 750 °C to reinforce the colloidal crystal structure. The thermal treatment resulted in the crystallization of the colloidal crystals into cristobalite while retaining the porous structure. The cristobalite-carbon nanocomposite was calcined in air to remove the carbon and create interstitial ordered mesopores in the cristobalite. The surfaces of crystalline mesoporous silica are quite different from those of various ordered mesoporous silica with amorphous frameworks; thus, the present findings will be useful for a precise understanding and control of the interfaces between the mesopores and silica networks.  相似文献   

4.
Assembly of nanoparticles is a promising route to fabricate devices from nanomaterials. Colloidal crystals are well-defined three-dimensional assemblies of nanoparticles with long-range ordered structures and crystalline symmetries. Here, we use a solvent evaporation induced assembly method to obtain colloidal crystals composed of polyhedral sodium rare earth fluoride nanoparticles. The building blocks exhibit the same crystalline orientation in each colloidal crystal as indicated in electron diffraction patterns. The driving force of the oriented assembly is ascribed to the facet-selected capping of oleic acid molecules on {110} facets of the nanoparticles, and the favorable coordination behavior of OA molecules is explained by the steric hindrance determined adsorption based on the studies of the surface atomic structure of nanocrystals and molecular mechanics simulation of OA molecules. The capping ligands also provide hydrophobic interactions between nanoparticles and further direct the oriented assembly process to construct a face-centered cubic structure. These results not only provide a new type of building block for colloidal crystals, but also clarify the important role of surface ligands, which determine the packed structure and orientations of nanoparticles in the assemblies.  相似文献   

5.
The ordering of dodecyl-chain self-assembled monolayers (SAM) on different nanoscopic surfaces was investigated by FT-IR studies. As model systems plane-crystal-shaped ZrO(2) nanoparticles and spherical SiO(2) nanoparticles were examined. The type of capping agent was chosen dependent on the substrate, therefore dodecylphosphonic acid and octadecylphosphonic acid were used for ZrO(2) and dodecyltrimethoxysilane for SiO(2) samples. The plane ZrO(2) nanocrystals yielded more ordered alkyl-chain structures whereas spherical SiO(2) nanoparticles showed significantly lower alkyl-chain ordering. Submicron-sized silica spheres revealed a significantly higher alkyl chain ordering, comparable to an analogously prepared SAM on a non-curved plane oxidized Si-wafer. In the case of ZrO(2) nanocrystals an intense alkyl-chain alignment could be disturbed by decreasing the grafting density from the maximum of 2.1 molecules/nm(2) through the variation of coupling agent concentration to lower values. Furthermore, the co-adsorption of a different coupling agent, such as phenylphosphonic acid for ZrO(2) and phenyltrimethoxysilane for SiO(2), resulted in a significantly lower alkyl-chain ordering for ZrO(2) plane crystals and for large SiO(2) spherical particles at high grafting density. An increasing amount of order-disturbing molecules leads to a gradual decrease in alkyl-chain alignment on the surface of the inorganic nanoparticles. In the case of the ZrO(2) nanoparticle system it is shown via dynamic light scattering (DLS) that the mixed monolayer formation on the particle surface impacts the dispersion quality in organic solvents such as n-hexane.  相似文献   

6.
Highly ordered mesoporous niobium‐doped TiO2 with a single‐crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb‐doped TiO2. The XPS measurements of Nb‐doped TiO2 showed the presence of Nb5+ and correspondingly Ti3+. With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate‐like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.  相似文献   

7.
We have demonstrated a simple fabrication of hollow nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides at 55 degrees C for 16 min. The hollowing mechanism proposed is that absorption of surfactants onto the Cu surface facilitates the formation of the void interior through an oxidative etching process. Upon extending the reaction up to 4 h, fragmentation, oxidation, and self-assembly were observed and the CuO ellipsoidal structures were formed. The headgroup lengths of the surfactants influenced the degree of CuO ellipsoidal formation, whereby longer surfactants favored the generation of ellipsoids. Optical absorption measured by UV-visible spectroscopy was used to monitor both oxidation courses of Cu-->Cu2O and Cu2O-->CuO and to determine the band-gap energies as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact-angle measurements, the wettability changed from hydrophilicity (18 degrees) to hydrophobicity (140 degrees) as the Cu2O nanoshells shifted to CuO ellipsoids.  相似文献   

8.
The chain conformation and dynamics of hydrocarbon and perfluorocarbon fatty acids adsorbed on 4 nm ZrO2 particles were characterized by solid-state 13C chemical shift and 19F NMR relaxation measurements, respectively, and compared to those from previous studies on lower surface area fumed metal oxide powders. The interdigitation of chains between neighboring particles, which increases with chain length, can be detected from the splitting of the 13C NMR and 19F NMR signals of the CH3 and CF3 groups, respectively. Similar to the case of alkanethiol self-assembled monolayers (SAMs) on gold nanoparticles, this interdigitation allows for efficient chain packing despite the high surface curvature. The hydrocarbon chains on the ZrO2 nanoparticles are more ordered, and the reversible chain length dependent order-disorder transition temperatures are elevated relative to those of the same fatty acids adsorbed on fumed ZrO2 powder. Likewise, the 19F spin lattice relaxation times of the fluorocarbon chains approach those of the bulk acids with increasing chain length and interdigitation, indicating densely packed chains.  相似文献   

9.
This paper reports a rapid and facile method of preparing free-standing colloidal crystals from monodisperse charged polystyrene (PS) microspheres. Mixed solvents (ethanol/water) were used as the dispersion medium in the self-assembly process of colloidal crystals. By a simple "floating self-assembly" method, PS microspheres floated on the surface of liquid and self-assembled into large area of three-dimensional (3D) ordered colloidal crystals within 15 min. Then epichlorohydrin was added in as a cross-linking agent to strengthen the colloidal-crystal film. After cross-linking reactions between the microspheres, the obtained colloidal-crystal film was free-standing and could be easily transferred to other substrates. Using tetrabutyl titanate as a titania precursor, 3D porous TiO(2) materials with rodlike skeletal structure were fabricated from the prepared free-standing colloidal crystal. This work provides a facile method to fabricate free-standing colloidal-crystal film, which can be used as an ideal template for the preparation of porous materials.  相似文献   

10.
We report here a new synthetic route to FePt nanoparticles using a stoichiometric mixture of Na2Fe(CO)4 and Pt(acac)2. The structure of FePt nanoparticles, their size, chemical composition, and magnetic property can be controlled by various synthetic parameters, such as the solvent type, nature, and molar ratio of surfactants and stabilizers, synthesis temperature, and purification process. Partially ordered fct (L10) nanoparticles with room temperature magnetic coercivity can be synthesized directly in tetracosane solution at 389 degrees C. The fcc FePt synthesized in nonadecane can be transformed into the magnetically important fct phase at 430 degrees C without significant particle sintering.  相似文献   

11.
关英  张拥军 《高分子学报》2017,(11):1739-1752
Poly(N-isopropylacrylamide)(PNIPAM)微凝胶粒子是一种软的胶体粒子.和单分散的SiO_2、PS、PMMA等硬的胶体粒子一样,单分散的PNIPAM微凝胶粒子也可以自组装成为高度有序的胶体晶体.微凝胶粒子软物质的特性及其对外部刺激的响应性赋予其不同于硬球的组装行为.微凝胶胶体晶体的高度有序结构及其刺激响应性使其在诸多领域有重要用途.本文分别介绍了三维及二维微凝胶胶体晶体组装的研究进展,并对已开发的基于微凝胶胶体晶体的应用进行了总结.  相似文献   

12.
In this study, we present a new method to fabricate large-area two-dimensionally (2D) ordered gold nanobowl arrays based on 3D colloidal crystals by wet chemosynthesis, which combines the advantages of a very simple preparation and an applicability to "real" nanomaterials. By combination of in situ growth of gold nanoshell (GNSs) arrays based on three-dimensional (3D) colloidal silica crystals, a monolayer ordered reversed GNS array (2D ordered GNS array) was conveniently manufactured by an acrylic ester modified biaxial oriented polypropylene (BOPP). 2D ordered gold nanobowl array with adjustable periodic holes, good stability, reproducibility, and repeatability could be obtained when the silica core was etched by HF solution. The surface-enhanced Raman scattering (SERS) enhancement factor (EF) of this 2D ordered gold nanobowl array could reach 1.27 × 10(7), which shows high SERS enhancing activity and can be used as a universal SERS substrate.  相似文献   

13.
Gold nanoparticles modified with C10NH2, C12NH2, C16NH2 and C18NH2 respectively have been prepared by the reverse micelle method. Nanoparticles stability and their two-dimensional (2D) ordered arrangement were studied by UV-Vis absorption spectra and LB technique. The factors, such as the chain length and the size distribution of particles, which affect the 2D ordered arrangement formation, are discussed. Experimental results show that the longer the chain length of surfactants capping the gold nanoparticles, the more stable the nanoparticles, and the more ordered 2D arrangement of gold nanoparticles.  相似文献   

14.
A 93% high-yield synthesis of well-dispersed, colorless zirconium dioxide (ZrO(2)) nanocrystals is reported. In this synthesis, hydrolysis and condensation reactions of zirconium(IV) tert-butoxide in the presence of oleic acid (100 degrees C) formed ZrO(2) precursors. The ZrO(2) precursors were made of -Zr-O-Zr- networks surrounded by oleic acid molecules. Annealing (280 degrees C) the precursors dispersed in dioctyl ether caused crystallization of the -Zr-O-Zr- networks, thereby generating 4 nm ZrO(2) nanocrystals stabilized with oleic acid. The particles were highly crystalline and tetragonal phase. A dense ZrO(2) nanocrystal dispersion in toluene (280 mg/mL) showed a transmittance of about 90% (3 mm optical path length) in the whole visible region.  相似文献   

15.
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.  相似文献   

16.
Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.  相似文献   

17.
Highly ordered hexagonal mesoporous silica materials (JLU-20) with uniform pore sizes have been successfully synthesized at high temperature (150-220 degrees C) by using fluorocarbon-hydrocarbon surfactant mixtures. The fluorocarbon-hydrocarbon surfactant mixtures combine the advantages of both stable fluorocarbon surfactants and ordered hydrocarbon surfactants, giving ordered and stable mixed micelles at high temperature (150-220 degrees C). Mesoporous JLU-20 shows extraordinary stability towards hydrothermal treatment (100 % steam at 800 degrees C for 2 h or boiling water for 80 h), thermal treatment (calcination at 1000 degrees C for 4 h), and toward mechanical treatment (compressed at 740 MPa). Transmission electron microscopy images of JLU-20 show well-ordered hexagonal arrays of mesopores with one-dimensional (1D) channels and further confirm that JLU-20 has a two-dimensional (2D) hexagonal (P6 mm) mesostructure. 29Si HR MAS NMR spectra of as-synthesized JLU-20 shows that JLU-20 is primarily made up of fully condensed Q4 silica units (delta=-112 ppm) with a small contribution from incompletely cross-linked Q3 (delta=-102 ppm) as deduced from the very high Q4/Q3 ratio of 6.5, indicating that the mesoporous walls of JLU-20 are fully condensed. Such unique structural features should be directly attributed to the high-temperature synthesis, which is responsible for the observed high thermal, hydrothermal, and mechanical stability of the mesoporous silica materials with well-ordered hexagonal symmetry. Furthermore, the concept of "high-temperature synthesis" is successfully extended to the preparation of three-dimensional (3D) cubic mesoporous silica materials by the assistance of a fluorocarbon surfactant as a co-template. The obtained material, designated JLU-21, has a well-ordered cubic Im3m mesostructure with fully condensed pore walls and shows unusually high hydrothermal stability, as compared with conventional cubic mesoporous silica materials such as SBA-16.  相似文献   

18.
We report a method that combines Brewster angle microscopy and Langmuir-Blodgett films technique to obtain highly ordered 2D colloidal crystals of nanospheres. The deposition of Langmuir-Blodgett films of silica spheres monitored by Brewster angle microscopy allows to determine with accuracy the best physical conditions to transfer highly ordered monolayers of nanoparticles.  相似文献   

19.
DNA is a powerful and versatile tool for nanoscale self-assembly. Several researchers have assembled nanoparticles and colloids into a variety of structures using the sequence-specific binding properties of DNA. Until recently, however, all of the reported structures were disordered, even in systems where ordered colloidal crystals might be expected. We detail the experimental approach and surface preparation that we used to form the first DNA-mediated colloidal crystals, using 1 mum diameter polystyrene particles. Control experiments based on the depletion interaction clearly indicate that two standard methods for grafting biomolecules to colloidal particles (biotin/avidin and water-soluble carbodiimide) do not lead to ordered structures, even when blockers are employed that yield nominally stable, reversibly aggregating dispersions. In contrast, a swelling/deswelling-based method with poly(ethylene glycol) spacers resulted in particles that readily formed ordered crystals. The sequence specificity of the interaction is demonstrated by the crystal excluding particles bearing a noninteracting sequence. The temperature dependence of gelation and crystallization agree well with a simple thermodynamic model and a more detailed model of the effective colloidal pair interaction potential. We hypothesize that the surfaces yielded by the first two chemistries somehow hinder the particle-particle rolling required for annealing ordered structures, while at the same time not inducing a significant mean-force interaction that would alter the self-assembly phase diagram. Finally, we observe that particle crystallization kinetics become faster as the grafted-DNA density is increased, consistent with the particle-particle binding process being reaction, rather than diffusion limited.  相似文献   

20.
The purpose of this study was to determine whether temperature scanning ultrasonic velocity measurements could be used to monitor the complex thermal transitions that occur during the crystallization and melting of triglyceride solid lipid nanoparticles (SLNs). Ultrasonic velocity ( u) measurements were compared with differential scanning calorimetry (DSC) measurements on tripalmitin emulsions that were cooled (from 75 to 5 degrees C) and then heated (from 5 to 75 degrees C) at 0.3 degrees C min (-1). There was an excellent correspondence between the thermal transitions observed in deltaDelta u/delta T versus temperature curves determined by ultrasound and heat flow versus temperature curves determined by DSC. In particular, both techniques were sensitive to the complex melting behavior of the solidified tripalmitin, which was attributed to the dependence of the melting point of the SLNs on particle size. These studies suggest that temperature scanning ultrasonic velocity measurements may prove to be a useful alternative to conventional DSC techniques for monitoring phase transitions in colloidal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号