首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report some preliminary results on the morphology of thin N,N -dimethyl-n-octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

2.
I. Lelidis  C.   edman 《Liquid crystals》2003,30(6):643-649
We report some preliminary results on the morphology of thin N,N -dimethyl- n -octadecyl-3-aminopropyltrimethoxysilyl chloride (DMOAP) films. When deposited on a glass substrate, DMOAP forms a mono- or multi-layer structure parallel to the substrate. The surface topography of the film is probed by atomic force microscopy. In general, the free surface of such a film is not flat and smooth. Islands and holes are formed on the free surface of the films when a sufficiently flat substrate is used. The thin film surface topography depends strongly on the nature of the bare substrate, the curing conditions, and the immersion time of the substrate in the DMOAP solution. The film is always rougher than the bare substrate used. Annealing roughens the surface of the alkoxysilane thin films deposited on a glass substrate. For films on glass plates covered with an indium tin oxide layer, annealing has minor effects. The surface topography affects the microstructure of homeotropic smectic samples.  相似文献   

3.
Three symmetrical semicrystalline oxyethylene/oxybutylene block copolymers (EmBn) were spin-coated on different substrates including silicon, hydrophobically modified silicon, and mica. The effects of surface property on the dewetting behavior of EmBn thin films and the chain orientation of the crystalline block were investigated with atomic force microscopy and grazing incidence X-ray diffraction . The EmBn thin films on silicon exhibit an autophobic dewetting behavior, while ordinary dewetting occurs for the thin films on modified silicon. It was observed that the stems of the E crystals in the first half-polymer layer contacting the mica surface were parallel to the surface, in contrast to the perpendicular chain orientation of the other polymer layers and of the first half-polymer layer on silicon. This is attributed to the strong interaction between the E block and mica, verified by infrared spectra.  相似文献   

4.
Previously, we have investigated the formation of polymer films from heptane on the surface of a metal substrate in low-temperature plasma (LTP) by varying the mode and time of plasma treatment [1–3]. It was found that the formation of the films occurs in three stages, each being characterized by certain topography, chemical structure, and mechanical properties of the films. In the first stage, continuous films are formed that mimic the substrate topography, smoothing it. The films are homogeneous in their chemical structure, have a low hardness, high permeability, and hydrophilicity. In the second stage, the films grow via the formation of isolated macromolecular entities, “islets.” At the end of the second step, the entire surface of the films is covered by the islets, and the films have a maximum hardness, low permeability, and hydrophobicity. In the third stage, the polymer chains undergo degradation accompanied by the intense etching of the film, which manifest itself in a reduction of its thickness, smoothing of the topography, enhancement of permeability, and surface hydrophilicity. In this study, we examined the effect of the chain length of saturated hydrocarbon molecules on the chemical structure and morphology of the polymer films formed in low-temperature plasma.  相似文献   

5.
Hole formation and growth on the top layer of thin symmetric diblock copolymer films, forming an ordered lamellar structure parallel to the solid substrate (silicon wafer) within these films, is investigated as a function of time (t), temperature (T), and film thickness (l), using a high-throughput experimental technique. The kinetics of this surface pattern formation process is interpreted in terms of a first-order reaction model with a time-dependent rate constant determined uniquely by the short-time diffusive growth kinetics characteristic of this type of ordering process. On the basis of this model, we conclude that the average hole size, lambda(h), approaches a steady-state value, lambda(h)(t-->infinity) identical with lambda(h,infinity)(T), after long annealing times. The observed change in lambda(h,infinity)(T) with temperature is consistent with a reduction of the surface elasticity (Helfrich elastic constant) of the outer block copolymer layer with increasing temperature. We also find that the time constant, tau(T), characterizing the rate at which lambda(h)(t) approaches lambda(h,infinity)(T), first decreases and then increases with increasing temperature. This temperature variation of tau(T) is attributed to two basic competing effects that influence the rate of ordering in block copolymer materials: the reduction in molecular mobility at low temperatures associated with glass formation and a slowing of the rate of ordering due to fluctuation effects associated with an approach to the block copolymer film disordering temperature (T(d)) from below.  相似文献   

6.
The Cu2ZnSnGeS4 (CZTGeS) thin films were deposited by the spray pyrolysis method at different substrate temperatures without further sulfurization. The influence of various deposition temperatures on the surface morphology, microstructure, optical properties, chemical, and phase composition were investigated. The substitution mechanism of Sn/Ge in the crystal lattice of CZTGeS depending on deposition temperatures was studied. It was shown that a variation in substrate temperature has a strong effect on the surface morphology of the films. The X-ray diffractometer (XRD), transmission electron microscope (TEM), and Raman spectroscopy (RS) analysis showed that CZTGeS films were polycrystalline with a kesterite-type single-phase structure and a preferential orientation of (112). The RS-mapping analysis showed the distribution of intensities on the surfaces of the films. Optical measurements showed that CZTGeS films are highly absorbing in the visible region, and the optical band gap is shifted from 1.89 to 1.84 eV.  相似文献   

7.
Cu thin films were deposited on Si(111), glass, and quartz substrates by magnetron sputtering. X‐ray diffraction, SEM, and photoemission electron microscope studies were carried out to characterize the films. An influence of the nature of substrate on the Cu2O and CuO phases formed was observed. Copper silicide formation in case of silicon substrates aided in formation of Cu2O rather than CuO unlike glass and quartz substrates. Formation of nanocrystallites was observed by SEM and X‐ray diffraction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
High-density polyethylene and randomly branched linear low-density polyethylene of varying branch length and content were used to produce oriented thin films. Sample morphology was investigated using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMA). Gelation studies suggested that the film preparation technique may have involved gel-drawing. DSC characterization of samples with approximately equal average branch content revealed very different melting behavior, suggesting differences in crystal size distributions. This was attributed to variations in the distribution of branches within samples. For similar branching distributions, the average melting temperature (and, similarly, crystal size) generally decreased as branch content increased. This was corroborated by TEM, with which crystal thickness was found to decrease as branch content increased. TEM further revealed that the lateral alignment of mosaic blocks and the resultant lamellar character of the thin films was obscured as branch content increased, a result of reduced crystal size, crystallinity, and possibly increased interphase content. DMA of compression-molded material revealed the presence of a beta peak in branched samples only. Moreover, the alpha transition temperature shifted to lower temperatures as branch content increased.  相似文献   

9.
采用射频(RF)磁控溅射技术制备了用于全固态薄膜锂电池的非晶态和多晶LiCoO2阴极薄膜,利用XRD和SEM研究了沉积温度对LiCoO2薄膜结构和形貌的影响,并研究了高温退火后薄膜的电化学性能.研究结果表明,随著基片温度的不同,薄膜成分、表面形貌以及电化学行为有明显差异.室温沉积的薄膜很难消除薄膜中Li2CO3的影响,经过高温退火处理后也无法形成有效的多晶LiCoO2薄膜,而150℃沉积的薄膜经过高温退火后形成了有利于锂离子嵌入的多晶LiCoO2结构,薄膜显示出了较好的电化学性能.  相似文献   

10.
Transparent nanocrystalline zirconia thin films were prepared by sol–gel dip coating technique using Zirconium oxychloride octahydrate as source material on quartz substrates, keeping the sol at room temperature (SET I) and 60 °C (SET II). X-ray diffraction (XRD) pattern shows the formation of mixed phase [tetragonal (T) + monoclinic (M)] in SET I and a pure tetragonal phase in SET II ZrO2 thin films annealed at 400 °C. Phase transformation from tetragonal to monoclinic was achieved in SET II film annealed at 500 °C. Atomic force microscopy analysis reveals lower rms roughness and skewness in SET II film annealed at 500 °C indicating better optical quality. The transmittance spectra gives a higher average transmittance >85% (UV–VIS region) in SET II films. Optical spectra indicate that the ZrO2 films contain direct—band transitions. The sub- band in the monoclinic ZrO2 films introduced interstitial Odefect states above the top of the valance band. The energy bandgap increased (5.57–5.74 eV) in SET I films and decreased (5.74–5.62 eV) in SET II films, with annealing temperature. This is associated with the variations in grain sizes. Photoluminescence (PL) spectra give intense band at 384 and 396 nm in SET I and SET II films, respectively. A twofold increase in the PL intensity is observed in SET II film. The “Red” shift of SET I films and “Blue” shift of SET II films with annealing temperature, originates from the change of stress of the film due to lattice distortions.  相似文献   

11.
The formation process of a ceramic (indium oxide) thin film (thickness: approximately 20 nm to several microns) was investigated by thermal analyses. Thermal changes of an organic precursor, indium(III) 2-ethylhexanoate, dip-coated on a glass substrate was successfully detected by DSC in air. Exothermic phenomena were observed at marked lower temperatures for the thin films than for the bulk material; thinner films had slightly lower peak temperatures. The reaction mechanism is discussed with reference to mass spectra of the evolved gases.  相似文献   

12.
Thin films of Zn-Ni-P on a copper substrate were synthesized by electrodeposition from chloride baths. It was found that the diffraction reflections of the crystal structure of Zn-Ni-P thin layers occur at thicknesses d ≥ 5 µm. The X-ray diffraction studies results confirm the formation in the Zn-Ni-P films of ZnNi10P3 compound. The morphology of the obtained films was analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS). The films are continuous and have a typical topography with many homogeneous globular features. EDS confirmed the formation of Zn-Ni-P coating only in 2 samples with Zn:Ni:P atomic ratios of 1:8:4 and 4:8:3, respectively. X-ray Photoelectron Spectroscopy (XPS) revealed the chemistry and the thickness of the studied thin films. At room temperature and thickness d ≥ 5 µm the investigated thin layers exhibit high values of the specific magnetizations in the range (25–37) A m2 kg?1, leading to the potential use in devices, appliances and electronics. The Curie temperature values of the synthesized Zn-Ni-P films were determined. It was found that by heating Zn-Ni-P thin layers of thicknesses d ≥ 5 µm up to a temperature T=900 K an interaction was detected with the copper substrate leading to a lower specific magnetization.   相似文献   

13.
The temperature dependences of the induced dichroic ratios (DRs) of azo dyes after their photoalignment in thin films 80 to 200 nm thick are studied. It is found that the DR values of layers containing dyes of the benzeneazodiphenyl series fall from 6.0 to 1.6 as the temperature rises from 60 to 130°C, respectively. A reduction in induced DR as the temperature rises (from 20 to 100°C) is also observed for the thin films of the dyes of benzeneazo-5,5’-dioxodibenzothiophene group. The absence of induced DR after irradiation with polarized light at 100°C indicates there is no alignment of molecules at this temperature.  相似文献   

14.
In this paper, we report 3D nickel (II) hydroxide thin films with porous nanostructures prepared on Ni foam by direct current electrodeposition from aqueous solution of Ni(NO3)2 through basic chemicals. The effect of deposition temperature on Ni(OH)2 thin film morphology is examined by field emission scanning electron microscopy, which is found to have significant influence on capacitance performance of Ni(OH)2 thin films. Moreover, the effect of annealing temperature on electrochemical capacitance and long-time stability of Ni(OH)2 thin films is investigated. An optimum-specific capacitance value of 2,447?farads?g?1 is obtained for Ni(OH)2 thin film deposited at 20?°C and annealed at 100?°C.  相似文献   

15.
The influence of the surface morphology of semi‐crystalline poly(ethylene terephthalate) (PET) and polyamide 12 (PA12) films on the adhesion and cohesion of thin oxide coatings is analysed, with attention paid to the role of spherulites and processing additives. The failure mechanisms of the coating are determined by means of fragmentation tests and the results are modelled using a constant interfacial strength approach with a Weibull‐type probability of fracture. Coating failure is shown to be initiated at defect sites such as pinholes and, in the case of PET, the presence of additives in the superficial layers of the polymer leads to a decrease of the crack onset strain by a factor of 20%. Large spherulitic structures found at the surface of PA12 films are shown to lead to preferential delamination at spherulites boundaries. For the two types of semi‐crystalline polymers, the interfacial shear strength is found to be comparable to the bulk shear strength of the polymer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
We present a comparison between the electron stimulated desorption (ESD) of anions from DNA samples prepared by lyophilization (an example of poorly organized or nonuniform films) and molecular self-assembly (well-ordered films). The lyophilization (or freeze- drying) method is perhaps the most frequently employed technique for forming DNA films for studies of low-energy electron (LEE) interactions leading to DNA damage; however, this technique usually produces nonuniform films with considerable clustering which may affect DNA configuration and enhance sample charging when the film is irradiated. Our results confirm the general validity of ESD measurements obtained with lyophilized samples, but also reveal limitations of lyophilization for LEE studies on DNA films. Specifically we observe some modulation of structures, associated with dissociative electron attachment, in the anion yield functions from different types of DNA film, confirming that conformational factors play a role in the LEE induced damage to DNA.  相似文献   

17.
Studies of piezoelectric and electrostrictive properties of (1?x)PMN-xPT thin films were carried out. We have chosen the compositions 90/10 and 70/30, which exhibit, respectively, mostly electrostrictive and piezoelectric behaviour in bulk material. Annealing temperature effects on PMN-PT structural, dielectric, ferroelectric and electromechanical properties have been investigated. We demonstrate that with conventional annealing the pure perovskite phase can be obtained at very low temperature (400°C) without any pyrochlore phase for the two compositions. We show that electromechanical response is a mix between electrostrictive and piezoelectric response for the two compositions. However, as can be easily understood, piezoelectric contribution is larger for 70/30. It is shown that electrical responses of the films obtained at 400°C are largely satisfied for many applications; for higher annealing temperature we observe an enhance of the electrical properties due to an improvement of the material quality in terms of crystalline structure.  相似文献   

18.
The thermal stability of the thin film morphology of two symmetric oxyethylene/oxybutylene block copolymers (E76B38 and E114B56) on mica and silicon was investigated via atomic force microscopy (AFM). It is found that morphological transition of EmBn thin films during melting is strongly dependent on the molecular weight of the diblock copolymers and their interaction with the substrate. For E76B38 on mica, a single-layered structure transforms into a double-layered structure upon melting, but the same polymer on silicon retains a single-layered structure after melting and spreads quickly to wet-out the silicon surface. Conversely a longer polymer, E114B56, has a thin film on mica that does not change much after melting of the crystalline E block. A mechanism was proposed to explain the relative stability of E76B38 and E114B56 thin films upon melting. Internal stress is produced during melting and can be released along two directions. The release along the vertical direction is restricted by the energy barrier related to the segregation strength, and the release along the horizontal direction is dependent on the mobility of block copolymer related to the interaction between the block copolymer and the substrate. Domain size affects the release rate of the internal stress along the horizontal direction and thus the thermal stability of EmBn thin films. Switching between horizontal and vertical releases can be realized by controlling the domain size of the thin films.  相似文献   

19.
The effect of deposition temperature on the photophysical properties of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and N,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) (Me-PTCDI) films is investigated with steady-state and time-resolved spectroscopy. Atomic force microscopy (AFM) images of the film surfaces show an increase in the dimensions of crystallites with substrate temperature, culminating in the formation of elongated crystallites on substrates held close to the sublimation temperature. In contrast, despite an improvement in the crystal quality, X-ray diffraction (XRD) studies indicate that the substrate temperature has a negligible effect on the molecular orientation; the PTCDA and Me-PTCDI molecules align parallel and tilted to the substrate surface, respectively. Both materials exhibit characteristic absorption, due to mixing between charge-transfer and Frenkel species, and broad structureless photoluminescence. Growth at elevated temperatures gives rise to increased low-energy absorption, attributed to the formation of charge-transfer species, and enhanced blue-shifted emission, although the effects are less pronounced for Me-PTCDI. Time-correlated single-photon counting data indicate that the enhancement coincides with a lengthening of the fluorescence decays, over the whole emission spectrum.  相似文献   

20.
Results of structural studies of titanium dioxide films synthesized on glass, silicon, and mica substrates by molecular layering are presented. An analysis of data furnished by electron and X-ray diffraction analyses and atomic-force microscopy of the samples in different growth stages revealed the effect of the substrate nature on the structure of the titanium oxide coatings synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号