首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An orthogonal two-dimensional liquid chromatographic (2D-LC) system was developed by using a vacuum-evaporation loop-type valve interface. Normal-phase liquid chromatography (NPLC) with a bonded CN phase column was used as the first dimension, and reversed-phase liquid chromatography (RPLC) with a C(18) column was used as the second dimension. All the solvents in the loop of the interface were evaporated at 90 degrees C under vacuum conditions, leaving the analytes on the inner wall of the loop. The mobile phase of the second dimension dissolved the analytes in the loop and injected them onto the secondary column, allowing an on-line solvent exchange of a selected fraction from the first dimension to the second dimension. The chromatographic resolution of analytes on the two dimensions was maintained at their optimal condition. Sample loss due to evaporation in the interface was observed that depended on the boiling point of the compound. Separation of sixteen polycyclic aromatic hydrocarbon mixtures and a traditional Chinese medicine Angelica dahurica was demonstrated.  相似文献   

2.
Three different comprehensive 2-D HPLC systems for the separation of phenolic antioxidants have been developed on the basis of different selectivities of a PEG-silica column in the first dimension and a packed or monolithic C18 or a ZR-CARBON column, respectively, in the second dimension. Two-dimensional comprehensive liquid chromatography using a serially connected short PEG-silica column and a conventional C18-silica or a ZR-CARBON column in the second dimension was tested to improve the resolution of the earlier eluting compounds in the first dimension. Various types of interface were used to connect the columns in the first and in the second dimension: i) two injection sampling loops of 100 microL in conventional arrangement; ii) a 10-port 2-position valve equipped with two trapping X-Terra columns instead of loops; and iii) two analytical D2 columns in parallel. The mobile phase in the first dimension has a lower elution strength than in the second dimension, allowing band compression of the solutes transferred from the first to the second dimension. This effect was enhanced using trapping columns instead of sampling loops as the interface between the two dimensions, thus allowing a decrease in the time of analysis. These systems were used for the analysis of beer samples. The relative location of the components in the 2-D retention plane varied in relation to their chemical structure in each instrumental set-up and allowed positive peak identification.  相似文献   

3.
用内径为0.53 mm的填充毛细管正相液相色谱为第一维, 用4.6 mm(i.d.)×50 mm RP-18e整体柱反相色谱为第二维, 建立了定量环-阀切换接口的全二维液相色谱系统(NPLC×RPLC). 第一维色谱分离洗脱出的组分交替存储在十通阀上的两个定量环中, 同时定量环中前一个组分被转移到第二维进行反相分离. 因为第一维的流动相流量仅是第二维的1/500, 自然解决了流动相兼容问题. 采用芳香族化合物的混合物和中药丹参正己烷提取液对该全二维液相系统的分离能力进行了评价.  相似文献   

4.
正相模式/反相模式的二维液相色谱系统的构建与应用   总被引:1,自引:0,他引:1  
兰韬  焦丰龙  唐涛  王风云  李彤  张维冰 《色谱》2008,26(3):374-377
以4.6mm×50 mm i. d.的Hypersil SiO2正相色谱柱为第一维,4.6mm×250 mm i. d.的Kromasil C18反相色谱柱为第二维,通过升高第二维色谱温度的方法增加两维流动相间互溶性的方法构建了定量环-阀切换接口的二维液相色谱系统(NPLC×RPLC)。根据有机溶剂的特征,在第一维正相色谱流动相中加入二氧六环;第二维反相色谱流动相中加入异丙醇,在改善流动相兼容性的同时,有效调整分离选择性。采用此系统对正天丸样品进行分离分析,达到1120的峰容量。  相似文献   

5.
A novel approach for the selection of the operational parameters (linear velocity, column length) for a comprehensive 2D-LC system is discussed. Starting point for the calculations is a given second dimension ((2)D) separation and a desired peak capacity for the 2D system. Using the theory developed here the optimum settings for the first dimension ((1)D) column can be derived. Theory clearly indicates that the choice of the (1)D conditions is basically limited to just one set of column lengths and linear velocities. The new method is tested on a comprehensive two-dimensional liquid chromatography system which uses size-exclusion chromatography (SEC) followed by reversed phase liquid chromatography (RPLC). A novel LC/LC interface, using a six-port valve rather than storage loops, joins the two chromatographic dimensions. From a theoretical comparison of continuous low flow and stop-flow operation the latter method was found to be an attractive mode of interfacing. The common idea that stop-flow operation results in additional band broadening is shown to be incorrect. The new interface design operated in the stop-flow mode permits the use of conventional analytical diameter HPLC columns, 7.8mm for SEC and 4.6mm for RPLC. The reversed phase chromatography utilizes a monolithic C-18 modified silica column, which produces fast and efficient analyses. As test samples complex mixtures of peptides were analyzed.  相似文献   

6.
In this study, 1-D and 2-D liquid chromatographic systems, namely, conventional HPLC, UPLC, HPLC x HPLC and HPLC x UPLC systems were developed and evaluated for the separation of phenolic acids in wine and juices. In the LC x LC studies, the first dimension separation was based on RPLC and the second dimension was performed with ion-pair chromatography. Three different columns, namely two short columns packed with either 2.5 or 1.7 microm particles and a monolithic column, were tested for the fast second dimension separation. The best results were obtained when the monolithic column was applied for the second dimension separation. The peak capacities for comprehensive 2-D systems varied from 330 to 616.  相似文献   

7.
A vacuum assisted dynamic solvent evaporation interface for coupling of two-dimensional normal phase/reverse phase liquid chromatography was developed and evaluated. A normal-phase liquid chromatographic (NPLC) column of a 250 mm × 4.6 mm I.D. 5 μm CN phase was used as the first dimension, and a reversed-phase liquid chromatographic (RPLC) column of 250 mm × 4.6 mm I.D. 5 μm C18 phase was used as the second dimension. The eluent from the first dimension flowed into a fraction loop, and the solvent in the eluent was dynamically evaporated and removed by vacuum as it was entering the fraction loop of the interface. The non-evaporable analytes was retained and enriched in about 5–25 μL solution within the loop. Up to 1 mL/min of mobile phase from the first dimension can be evaporated and removed dynamically by the interface. The mobile phase from the second dimension then entered the loop, and dissolved the concentrated analytes retained inside the loop, and carried them onto the second dimension column for further separation. The operation conditions of the two dimensions were independent from each other, and both dimensions were operated at their optimal chromatographic conditions. We evaluated the interface by controlling the loop temperature in a water bath at normal temperature, and investigated the sample losses by using standard samples with different boiling points. It was found that the sample loss due to evaporation in the interface was negligible for non-volatile samples or for components with boiling point above 340 °C. The interface realizes fast solvent removal of mL volume of fraction and concentration of the fraction into tenth of μL volume, and injection of the concentrated fraction on the secondary column. The chromatographic performance of the two-dimensional LC system was enhanced without compromise of separation efficiency and selectivity on each dimension.  相似文献   

8.
Jia L  Tanaka N  Terabe S 《Electrophoresis》2005,26(18):3468-3478
A two-dimensional (2-D) separation system of coupling chromatography to electrophoresis was developed for profiling Escherichia coli metabolites. Capillary liquid chromatography (LC) with a monolithic silica-octadecyl silica column (500 x 0.2 mm ID) was used as the first dimension, from which the effluent fractions were further analyzed by capillary electrophoresis (CE) acting as the second dimension. Field-enhanced stacking was selectively employed as a concentration strategy to interface the two dimensions, which proved to be beneficial for the detection of metabolites. An artificial sample containing 118 standards, some of which lack chromophores or have weak UV absorbance, was used to optimize the 2-D separation system. Under the optimum conditions, 63 components in the artificial sample having absorbance at 254 nm could be well resolved and detected. The utility of the system was demonstrated by comprehensive analysis of E. coli metabolites. Comparing with the previous 2-D separation system we published in Anal. Chem. 2004, 76, 1419-1428, using a longer monolithic column in the first dimension improved the separation efficiency and offered the possibility of increasing the injection volume without compromising the separation efficiency. In the second dimension, field-enhanced stacking was used to improve the concentration sensitivity of the metabolites, and more metabolites in E. coli cell extract were detected and identified using the developed 2-D separation system. In addition, preliminary investigation for future CE-mass spectrometry coupling was also made in the study by using volatile buffers in the capillary LC and CE techniques.  相似文献   

9.
The design of a new interface for comprehensive two-dimensional liquid chromatography (LC x LC) is described. To the conventionally used LC x LC system with the loop-type interface consisting of a two-position/ten-port switching valve equipped with two loops, an extra two-position/ten-port switching valve, a detector, a pump and a second column placed in parallel with the column in the second dimension, are added. The features of the interface are that the separation space in the second dimension is significantly enlarged and that the number of fractions transferred from the first to the second dimension can be increased, reducing the risk to lose resolution of the primary dimension. The potential of the system in NPLC x 2RPLC is illustrated with the analysis of a standard mixture and a lemon oil extract. For the lemon oil analysis, the effective peak capacity was increased from 437 using a conventional interface to 1095 with the new interface. RPLC x 2RPLC in combination with reduced modulation times was applied to the analysis of steroids and to the detection of impurities at the 0.05% relative concentration level in a sulfonamide drug sample.  相似文献   

10.
The design of a new interface to hyphen high efficiency supercritical fluid chromatography (SFC) and fast RPLC in a comprehensive configuration is described. SFC x RPLC is a viable alternative to normal phase (NP) LC x RPLC and is characterized by high orthogonality. Compared to NPLC x RPLC an additional advantage is the expansion of supercritical carbon dioxide (CO(2)) when exposed to atmospheric pressure leading to fractions consisting of solvents that are miscible with the second dimension RPLC mobile phase. The interface consists of a two-position/ten-port switching valve equipped with two packed octadecyl silica (C(18)) loops for effective trapping and focusing of the analytes after elution from the SFC dimension. The addition of a water make-up flow to the SFC effluent prior to entering the loops is of fundamental importance to efficiently focus the solutes on the C(18) material and to reduce interferences of expanded CO(2) gas on the second dimension separation. The features of the system are illustrated with the analysis of a lemon oil sample.  相似文献   

11.
Yang X  Zhang X  Li A  Zhu S  Huang Y 《Electrophoresis》2003,24(9):1451-1457
A novel comprehensive two-dimensional (2-D) separation system coupling capillary high-performance liquid chromatography (cHPLC) with microchip electrophoresis (chip CE) is demonstrated. Reversed-phase cHPLC was used as the first dimension, and chip CE acted as the second dimension to perform fast sample transfers and separations. A valve-free gating interface was devised simply by inserting the outlet-end of LC column into the cross-channel on a specially designed chip. A home-made confocal laser-induced fluorescence detector was used to perform on-chip high-sensitive detection. The cHPLC effluents were continuously delivered to the chip and pinched injections of the effluents every 20 seconds were employed for chip CE separation. Gradient elution of cHPLC was carried out to obtain the high-efficiency separation. Free-zone electrophoresis was performed with triethylamine buffer to achieve high-speed separation and prevent sample adsorption. Such a simple-made comprehensive system was proved to be effective. The relative standard deviations for migration time and peak height of rhodamine B in 150 sample transfers were 3.2% and 9.8%, respectively. Peptides of the fluorescein isothiocyanate (FITC)-labeled tryptic digests of bovine serum albumin were fairly resolved and detected with this comprehensive 2-D system.  相似文献   

12.
张政  唐涛  杨三东  孙元社  李彤  张维冰 《色谱》2017,35(5):526-532
基于蛋白质的尺寸及带电性质,将凝胶过滤色谱(GFC)与离子交换色谱(IEC)两种分离模式结合,采用双捕集柱接口构建了GFC/2×IEC二维液相色谱(2-D LC)分离系统,同时考虑离子交换色谱分离蛋白质对等电点范围的限制,进一步结合中心切割平行柱的方法实现对蛋白质的全二维分离。为与后续蛋白质在线酶解、多肽分离及质谱鉴定匹配,系统中采用常规柱以保证蛋白质质谱鉴定对样品量的要求,3种常规分离柱分别选用凝胶过滤色谱柱TSK-GEL G3000SW_(XL)(300 mm×7.8 mm,5μm)、强阴离子交换色谱柱Hypersil SAX(100 mm×4.6 mm,10μm)和强阳离子交换色谱柱Hypersil SCX(100 mm×4.6 mm,10μm)。最终以酵母细胞蛋白质提取液为样品,对构建的二维系统加以评价,在总蛋白质浓度13.5 mg/mL、上样体积100μL的条件下,将第一维分离等时间切割17次,并将切割馏分全部导入第二维继续分离,二维系统在148 min内获得的总峰容量达到884。说明所构建的系统可以用于蛋白质的在线全二维分离。  相似文献   

13.
A comprehensive orthogonal two-dimensional liquid chromatography (2D-LC) based on the modification of mobile phases was developed with a sample loop–valve interface. To improve the compatibility of mobile phases and analysis speed, some special solvents were chosen as the mobile phases, and the column temperature was elevated to decrease the viscosity of mobile phases of reversed-phase liquid chromatography (RPLC). Based on this principle, the first dimension was normal-phase liquid chromatography (NPLC) with a SiO2 column, and the second dimension was reversed-phase liquid chromatography containing two tandem C18 columns. 1,4-Dioxane was used in the NPLC mobile phase, and isopropyl alcohol was employed in the RPLC mobile phase. Moreover, the elevated column temperature enabled the reduction of the backpressure and using tandem C18 columns to improve the resolving power in RPLC. The new comprehensive 2D-LC system and applied strategy offered a novel idea for construction of 2D-LC system. A traditional Chinese medicine, Zhengtian pill, was used as the test sample to evaluate the constructed 2D-LC system. 876 peaks were detected, and the peak capacity reached 1740.  相似文献   

14.
In this study, an improved online comprehensive two‐dimensional liquid chromatography platform coupled to tandem mass spectrometry was developed for the analysis of complex polyphenolic samples. A narrowbore hydrophilic interaction chromatography column (150 × 2.0 mm, 3.0 μm, cross‐linked diol) was employed in the first dimension, while a reversed‐phase column based on monodisperse sub‐2 μm fully porous particles (50 × 3.0 mm, 1.9 μm d.p.) with high surface area (410 m2/g) was employed in the second dimension. The combination of a trapping column modulation interface with the high retentive fully porous monodisperse reversed‐phase column in the second dimension resulted in higher peak capacity values (1146 versus 867), increased sensitivity, sharper and more symmetrical peaks in comparison with a conventional loop‐based method, with the same analysis time (70 min). The system was challenged against a complex polyphenolic extract of a typical Italian apple cultivar, enabling the simultaneous separation of multiple polyphenolic classes, including oligomeric procyanidins, up to degree of polymerization of 10. Hyphenation with an ion trap time‐of‐flight mass spectrometer led to the tentative identification of 121 analytes, showing how this platform could be a powerful analytical tool for the accurate profiling of complex polyphenolic samples.  相似文献   

15.
Two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography (2D-RPLC/HILIC) system was successfully applied for comprehensive characterization of steviol glycosides from Stevia rebaudiana. The experiments were performed in offline mode using an XCharge C18 column in first dimension and an XAmide column in second dimension. In first dimension, preliminary separation of Stevia aqueous extract was accomplished and 30 fractions were collected. Then fractions 1-20 were selected for further purification and 13 compounds with high purity were obtained in second dimension. Comprehensive characterization of these compounds was completed by determination of their retention time, accurate molecular weight, diagnostic fragmentation ions, and nuclear magnetic resonance spectroscopy. As a result, all nine known steviol glycosides, as well as other four steviol glycosides were fully purified. The result demonstrated that this procedure is an effective approach for the preparative separation and comprehensive characterization of steviol glycosides in Stevia. This 2D-RPLC/HILIC method will be a promising tool for the purification of low-abundance compounds from natural products.  相似文献   

16.
1-D and 2-D comprehensive (LC×LC) liquid chromatography methods have been developed and compared for the separation and quantification of flavanones in various Citrus juices. 1-D analyses were carried out on a superficially porous C18 column, whereas the 2-D LC approach was composed of a polyethylene glycol silica narrow-bore column packed with totally porous particles in the first dimension (D1) and a superficially porous C18 column in the second dimension (D2). Low-selectivity correlations were ensured by the complementary separation mechanisms offered by the D1 and D2 columns. Quantification was carried out both manually and by means of a software capable of detecting and quantifying each peak from the 2-D plot. Limit of detection (LOD) values as low as 0.023 μg/mL were obtained for hesperidin used as reference material for 1-D LC analyses, whereas values as high as 0.432 μg/mL were obtained by comprehensive LC. This discrepancy can be traced back to the minor sensitivity experienced in comprehensive LC due to both sample dilution in D1 and the high flow rates employed in D2. On the other hand, the separation capabilities of the LC×LC approach allowed to reduce the interferences coming from the matrix and to achieve the separation of some critical pairs, e.g. hesperidin/naringin difficult to accomplish in 1-D LC.  相似文献   

17.
A novel two-dimensional two-column liquid chromatography/mass spectrometry (LC/MS) technique is described in this work, where chromatofocusing (CF) has been coupled to nonporous reversed-phase (NPS-RP) HPLC to separate proteins from human breast epithelial whole cell lysates. The liquid fractions from NPS-RP-HPLC are readily amenable to direct on-line analysis using electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (ESI-TOFMS). A key advantage of this technique is that proteins can be 'peeled off' in the liquid phase from the CF column according to their isoelectric points (pI) in the first chromatographic separation dimension. The NPS-RP-HPLC column further separates these pI-focused fractions based upon protein hydrophobicity as the second chromatographic dimension. The third dimension involves on-line molecular weight determination using ESI-TOFMS. As a result, this method has the potential to be fully automated. In addition, a 2-D protein map of pI versus molecular weight is generated, which is analogous to a 2-D gel image. Thus, this technique may provide a means to study differential expression of proteins from whole cell lysates.  相似文献   

18.
A 2D liquid chromatography (LC) system using hydrophilic interaction chromatography (HILIC) and reversed phase columns has been employed for comprehensive (LC × LC) separation of rat muscle tissue micro-dialysate. Incorporation of an on-line reverse-phase solid phase extraction (SPE) enrichment column in front of the first dimension enabled aqueous samples with high salt concentrations to be injected directly without compromising the chromatographic performance of the HILIC column. Since the SPE enrichment column allowed injection of large sample volumes (e.g. 450 μL), a capillary HILIC column (inner diameter 0.3 mm) could be employed instead of a larger column which is often used in the first dimension to load sufficient amounts of sample. The two chromatographic dimensions were connected using a column selector system with 18, 1.0 mm I.D. C18 “transition” SPE columns. A PLRP C18 column was used in the second dimension. The 2D LC system’s performance was evaluated with a tryptic digest mixture of three model proteins. Good trapping accuracy (HILIC→transition SPE→RP recovery >95%) and repeatability (within-and between day retention time RSDs of first and second dimension chromatography >1%) was achieved. A dialysis sample of rat muscle tissue was separated with the 2D system, revealing complexity and large differences in concentrations of the various compounds present, factors which could potentially interfere with the quantification and monitoring of two target analytes, arg-bradykinin and bradykinin. Subsequently, “Heart-cut” 2D LC-electrospray–mass spectrometry (ESI–MS) with post-column on-line standard injection was employed to monitor arg-bradykinin and bradykinin levels as a function of various muscle conditions. The method’s quantification precision was RSD = 3.4% for bradykinin.  相似文献   

19.
To overcome the peak band broadening and to increase the peak capacity and separation efficiency of a two-dimensional liquid chromatographic system, a high-temperature normal phase liquid chromatography (HTNPLC) was used as the first dimension (1st-D), and a RPLC was used as the second dimension (2nd-D). The sample was first separated on the 1st-D CN column and the primary eluent stored in the sampling-loop system alternatively (in HTNPLC×RPLC mode) or selectively (in HTNPLC/RPLC mode) and was then transferred to 2nd-D C18 column for further separation. The resolution and separation efficiency of the systems were greatly improved. The systems were evaluated by analyzing several polycyclic aromatic hydrocarbons and Glycyrrhiza uralensis extract. __________ Translated from Journal of Instrumental Analysis, 2008, 27(1) (in Chinese)  相似文献   

20.
A new approach is presented to solve the problem of a long separation time in the second dimension of comprehensive two-dimensional chromatography. The need for a rapid separation in the second column is overcome by repeating analysis of a sample many times. In each of these individual analysis cases the sample is injected into the first dimension column and after a delay a low amount of the effluent at the end of the first column is sampled to the second-dimensional column. The time interval between the samplings from the first column to the second column is constantly increased. Thus, the system enables a comprehensive analysis of the effluent emerging from the first into the second column. This approach, which we call stroboscopic sampling, is tested for coupling high-performance liquid chromatography (HPLC) to capillary electrophoresis (CE) by an interface which operates on the principle of transporting the effluent from the HPLC column to the capillary inlet by small pressure pulses (0.5 MPa). The performance of the interface for accomplishing the comprehensive HPLC-CE analysis was demonstrated for an on-line connection of a short ion-exchange column and an ion-exclusion column to the CE capillary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号