首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sol-gel titania was phosphated in two different ways: i) “in situ” phosphation using phosphoric acid as hydrolysis catalyst in the titanium butoxide gelling system, and ii) gelling with nitric acid and impregnation with ammonium phosphate solution. In calcined samples at 600°C a positive effect on the specific surface area for the “in situ” phosphated sample was found. X-ray diffraction patterns showed that the presence of phosphates ions stabilized the anatase phase. FTIR-pyridine adsorption identified only Lewis acid sites in phosphated samples. In the isopropanol decomposition for “in situ” phosphated titania, the activity was six times higher than that obtained for titania phosphated by impregnation, showing strong acidity for the in situ phosphated TiO2 catalyst.  相似文献   

2.
Whole cells ofBrevibacterium flavum having fumarase activity were immobilized using K-carrageenan. The stabilities of fumarase activity in the immobilized cells against external factors, including heat, pH, organic solvents, and protein denaturing reagents, were compared with those of free cells and native enzyme. The stabilities of fumarase activity in immobillized cells against external factors were highest, and those of native enzyme were lowest. In the “gel-state,” K-carrageenan-immobilized cells showed a much higher stabilization effect for external factors than “sol-state” immobilized cells.  相似文献   

3.
The biocatalytic systems from nanocapsules containing α-chymotrypsin in the inner aqueous cavities have been prepared. They can act in both the organic solvent and the aqueous medium. For such encapsulation, the reversed hydrated micelles from N,N-diallyl-N,N-didodecyl ammonium bromide (DDAB) in cyclohexane (w0 = 22), including α-chymotrypsin, have been polymerized by UV initiation. After precipitation by acetone, these nanocapsules were moved into the aqueous medium with the aid of ionic, AOT, or nonionic, Brij-97, surfactants. In this case, the unilamellar liposomes were formed. They have the inner monolayer from the poly-DDAB network, and the outer one predominantly from surfactant molecules. According to the light-scattering data, the average outer diameter of nanocapsules equals to 20 nm. The vesicular “coated” α-chymotrypsin was used for study of enzymatic activity. It has been shown using the integral form of the Michaelis-Menten equation, that by encapsulation of α-chymotrypsin the value of the Michaelis constant, Km, increases by a factor of 1.8 by the ATEE hydrolysis. However, the value of the maximal velocity, Vmax, decreases by a factor of 1.7. Encapsulated α-chymotrypsin has a high thermostability keeping its own activity up to 80°C. The polymer network blocks the conformational transitions of enzyme molecule by heating of a system.  相似文献   

4.
Partially purified α-Galactosidase from Penicillium griseoroseum was immobilized onto modified silica using glutaraldehyde linkages. The effective activity of immobilized enzyme was 33%. Free and immobilized α-galactosidase showed optimal activity at 45 °C and pH values of 5 and 4, respectively. Immobilized α-galactosidase was more stable at higher temperatures and pH values. Immobilized α-galactosidase from P. griseoroseum maintained 100% activity after 24 h of incubation at 40 °C, while free enzyme showed only 32% activity under the same incubation conditions. Defatted soybean flour was treated with free and immobilized α-galactosidase in batch reactors. After 8 h of incubation, stachyose was completely hydrolyzed in both treatments. After 8 h of incubation, 39% and 70% of raffinose was hydrolyzed with free and immobilized α-galactosidase respectively. Immobilized α-galactosidase was reutilized eight times without any decrease in its activity.  相似文献   

5.
An alternative approach to the regeneration of coenzymes is described here using immobilized microorganisms possessing “NADH-oxidase” function. Bacteria containing NADH-oxidase activity are immobilized by microencapsulation within artificial cells. In this form, the microencapsulated bacteria can recycle NADH back to NAD in the presence of molecular oxygen as an electron acceptor. The only byproduct of the recycling reaction is water. In order to perform the biological regeneration of NAD, the activity of NADH-oxidase was investigated in 13 strains of aerobic bacteria and yeast. The NADH-oxidizing bacteriaLeuconostoc mesenteroides exhibited the highest activity among the microorganisms tested. The permeabilized bacteria showed 10% of their initial activity after microencapsulation. Light and electron microscopy studies of bacteria loaded microcapsules have been done. Enzymatic properties of microcapsule-immobilized bacteria were investigated in comparison with those of the free enzyme complex.Leuconostoc mesenteroides, containing NADH-oxidase, has been microencapsulated together with 3α-hydroxysteroid dehydrogenase (3α-HSDH) for stereospecific steroid oxidation. In a batch reactor, 2 mg of NAD, with recycling, allowed the same substrate consumption as 4.4 mg of NAD without recycling. The microencapsulated system can be used repeatedly. The system is functional for 10 h, during which time each molecule of NAD has been used 7.6 times.  相似文献   

6.
The synthesis of L-tyrosine fructosyl ester, from fructose and L-tyrosine methyl ester, was carried out by a transesterification reaction catalyzed by α-chymotrypsin in water without cosolvent. The effect of fructose concentration and temperature for the transesterification reaction were determined on both specific activities and product yield. The influence of the presence of fructose has been studied regarding α-chymotrypsin and L-tyrosine fructosyl ester stabilities. It appeared that an increase of temperature enhanced enzyme activity but slumped the product yield because of the very weak stability of tyrosine fructosyl ester.  相似文献   

7.
 Polymer modification of monodispersed colloidal silica (0.5 μm) with poly(maleic anhydride-co-styrene) (P(MA-ST)) and poly (maleic anhydride-co-methyl methacrylate) (P(MA-MMA)) and application of the composite particles to biomaterial carriers were investigated. The reaction of bovine serum albumin(BSA)-immobilized P(MA-MMA)/SiO2 with the anti-BSA antibody showed higher sensitivity in immunological agglutination test than BSA–P(MA-ST)/SiO2, though immobilization efficiency of BSA on P(MA-MMA)/SiO2 was lower than that on P(MA-ST)/SiO2. Alkaline phosphatase and glucose oxidase immobilized on the composite particles exhibited extremely low activities, but α-chymotrypsin immobilized on P(MA-MMA)/SiO2 and its derivative particles showed the relative activity of 12.5% and 16.1% to the native enzyme, respectively. Grafting of a hydrophilic polymer of poly(acrylic acid) to P(MA-ST)/SiO2 let to an increase of the immobilized α-chymotrypsin activity to give the maximum relative activity of 55.5%. Received: 23 August 1996 Accepted: 16 October 1996  相似文献   

8.
Porous glass fibers with silane-glutaraldehyde immobilized glucoamylase have been examined by Scanning Electron Microscopy (SEM). Partial multilayer coating (“sheeting”) on the fibers’ surfaces has been observed even on gold uncoated samples by using a high resolution SEM. This “sheeting” is attributed to the fiber chemical activation treatment prior to enzyme loading. A 40% reduction of free pore area as a consequence of enzyme attachment is also observed.  相似文献   

9.
This study examined the production of protein hydrolysates with controlled composition from cheese whey proteins. Cheese whey was characterized and several hydrolysis experiments were made using whey proteins and purified β-lactoglobulin, assubstrates, and trypsin and α-chymotrypsin, as catalysts, at two tem peratures and several enzyme concentrations. Maximum degrees of hydrolysis obtained experimentally were compared to the theoretical values and peptide compositions were calculated. For trypsin, 100% of yield was achieved; for α-chymotrypsin, hydrolysis seemed to be dependent on the oligopeptide size. The results showed that the two proteases could hydrolyze β-lactoglobulin. Trypsin and α-chymotrypsin were stable at 40°C, but a sharp decrease in the protease activity was observed at 55°C.  相似文献   

10.
The immobilization of α-chymotrypsin on the surface of boron silicate glass microspheres is conducted via the technique of multilayer adsorption of polyelectrolytes. It is shown that the enzyme is adsorbed on both positively and negatively charged surfaces and its activity is partially preserved relative to that in solution. The activity of the enzyme depends on the number of polyectrolyte layers preliminarily adsorbed on glass microspheres and on the charge of the surface. The activity of α-chymotrypsin adsorbed on the negatively charged surface is four times higher than the activity of this enzyme adsorbed on a positively charged surface.  相似文献   

11.
Summary Racemic resolution of aromatic and aliphatic amino acid esters into L-amino acid and D-amino acid ester via LC and HPLC is achieved by using enzyme reactors as chromatographic columns. For this purpose α-chymotrypsin and trypsin are immobilized on Eupergit C, Sepharose 4B and Lichrosorb-Diol.  相似文献   

12.
Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca2+-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a “ trickle-bed ” reactor.  相似文献   

13.
The hydrolysis of p-nitrophenyl benzoate catalyzed by α-chymotrypsin in the presence of cetyltriphenylphosphonium bromide, cetyltributylphosphonium bromide and cetyltrimethylammonium bromide (pre and post micellar regions) has been studied. The ester is hydrolyzed readily by α-chymotrypsin in all the surfactants with the highest activity shown in cetyltributylphosphonium bromide. The dependences of the Michaelis constant and the catalytic constant with surfactant concentration have also been discussed.  相似文献   

14.
An investigation of heparinase immobilization   总被引:1,自引:0,他引:1  
A systematic investigation of the parameters that affect the efficiency of immobilizing heparinase onto cyanogen bromide activated crosslinked 8% agarose beads was conducted. Two experimental measures, the “fraction bound” and the “fraction retained,” were used to monitor the coupling efficiency. The fraction bound is the portion of the total initial enzyme that is bound to the agarose gel. The fraction retained is the fraction of bound enzyme that is active. The product of the two measures indicates the coupling efficiency. The activity of the immobilized heparinase was measured under conditions free of both internal and external mass transfer limitations, and thus, the fraction retained represents the true immobilized enzyme activity. Increasing the degree of activation of the beads results in an increase in the fraction bound, the fraction retained, and consequently, the coupling efficiency. As the ratio of enzyme solution to gel volume increases from 1.5 to 2.2, the fraction bound remains constant but the fraction retained decreases (heparinase concentration; 0.15 mg/mL and degree of activation; 9.5 μmol of cyanate esters/g of gel). At volume ratios greater than 2.2, both the fraction bound and the fraction retained decline continuously. Changing the heparinase concentration in the coupling solution changes the coupling efficiency in a manner similar to that of the volume ratio change. When heparin is added during the coupling process, the fraction bound declines as the heparin concentration increases, whereas the fraction retained increases up to a heparin concentration of 12 mg/mL and decreases thereafter. When arginine, lysine, and glycine are used to block the unreacted cyanate ester groups after the coupling process, the immobilized heparinase shows different pH optima of 6.5, 6.9, and 7.2, respectively. Based upon these findings, a protocol to optimize heparinase immobilization is developed.  相似文献   

15.
通过霍夫曼降解光化学原位聚合制备的聚丙烯酰胺包覆的Fe3O4纳米粒子得到了氨基化磁性纳米凝胶, 用缩合剂1-乙基-3-(3-二甲胺)碳二亚胺成功地将α-胰凝乳蛋白酶固定到氨基化磁性纳米凝胶上, 并采用光子相关光谱、傅里叶变换红外光谱、透射电子显微镜、X射线粉末衍射和热重-示差扫描量热联用等多种手段对其进行了表征. 固定化了的α-胰凝乳蛋白酶平均粒径约为31 nm; 热重法测得每克凝胶上的载酶量为69 mg, BCA 法测得每克凝胶上的载酶量为61 mg; 酶的固定化和氙灯辐照并未改变Fe3O4的晶形结构; 固定化酶比活力为0.93 U/(mg·min), 为自由酶活力的59.3%; 磁含量高达88%, 具有优异的磁响应性能, 可应用于诸多生物医药领域的快速检测、分离及酶的再生利用.  相似文献   

16.
A one-step mild method for entrapping animal cells and enzymes in macroporous composite poly (N-vinyl caprolactam)-calcium alginate (PVCL-CaAlg) hydrogels is described. Some properties of immobilized enzymes, such as thermal and storage stabilities and stability in water/organic media were investigated. Composite PVCL-CaAlg gels were successfully applied to immobilize a number of proteases, namely, trypsin, α-chymotrypsin, carboxypeptidase B, and thrombin. Thermal stability of the immobilized preparations obtained by entrapment in hydrogel beads allowed us to use them at 65–80†C, while the native enzymes were completely inactivated at 50–55°C. Various applications of enzymes and cells immobilized in beads weredemonstrated. Immobilized trypsin and carboxypeptidase B were applied to prepare human insulin from recombinant proinsulin. The hydrogel beads with entrapped α-chymotrypsin were used in enantioselective hydrolysis of Shiff's base of D,L-phenylalanine ethyl ester (SBPH) in acetonitrile/water medium. Thrombin immobilized in PVCL-based hydrogel films was shown to be a promising compound for wound treatment. To prepare pure preparations of monoclonal antibodies (MAb) several hybridoma cell lines, including hybridoma cell lines producing MAb to interleukin-2, were successfully cultivated in the hydrogel beads.  相似文献   

17.
The enzyme aspartate racemase from Pyrococcus horikoshii OT3 catalyzes the interconversion between l- and d-Asp. In this work, we employed the hybrid QM/MM approach with the self-consistent charge-density functional tight binding (SCC-DFTB) model to study the catalytic mechanism for the conversion of l-Asp into d-Asp. The molecular dynamics simulation showed that the substrate l-Asp forms an extensive network of interactions with the active-site residues of the aspartate racemase through its side chain carboxylate, ammonium group, and α-carboxylate. The potential of mean force calculations confirmed that the racemization reaction involves two proton transfers (from the α-carbon to Cys194 and from Cys82 to the α-carbon), which occurs in a concerted way, although highly asynchronous. The calculated free energy of activation is 17.5 kcal/mol, which is consistent with the reaction rate measured from experiment. An electrostatic interaction analysis was performed to estimate the key role played by individual residues in stabilizing the transition state. The docking study on the binding of l-Asp and d-Asp to aspartate racemase indicates that this enzyme employs a “two-base” mechanism not a “one-base” mechanism.  相似文献   

18.
Summary A homologeous series of stereoisomericbis-amides derived from racemic N-(3,5-dinitrobenzoyl)leuchine and various α,ω-diamines has been chromatographed on chiral stationary phases (CSP) derived from N-(2-naphthyl)alanine. Plots of α, the separation factor for enantiomers, versus N, the number of methylene groups in the α,ω-diamines, are convex in shape and show a maximum in α when N=B. This maximum is attributed to optimal “bridging” between adjacent binding sites on the CSP. “Bridging” is simultaneous interaction of the two ends of thebis-derivative with sites on the CSP. Separation factors for thebis-analytes are approximately the square of those of correspondingmono-amides. Presented at the 11th International Symposium on Column Liquid Chromatography, Amsterdam, June 28–July 3, 1987.  相似文献   

19.
A study of the cross-linking of β-galactosidase on magnetic beads is reported here. The magnetic beads were prepared from artemisia seed gum, chitosan, and magnetic fluid in the presence of a cross-linking regent (i.e., glutaraldehyde). The reactive aldehyde groups of the magnetic beads allowed the reaction of the amino groups of the enzymes. The animated magnetic beads were used for the covalent immobilization of β-galactosidase. The effect of various preparation conditions on the activity of the immobilized β-galactosidase, such as immobilizing time, amount of enzyme, and the concentration of glutaraldehyde, were investigated. The influence of pH and temperature on the activity and the stability of the enzyme, both free and immobilized, have been studied. And o-nitrophenyl-β-d-galactopyranoside (ONPG) was chosen as a substrate. The β-galactosidase immobilized on the magnetic beads resulted in an increase in enzyme stability. Optimum operational temperature for immobilized enzyme was 10 °C higher than that of free enzyme and was significantly broader.  相似文献   

20.
The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)-2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be “memorized.” The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantio-selectivity (avarege E value of eight batches >460) in nonaqueous media at “memorial” pH 9.5, 50°C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号