首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
4.
For three stereo-structural models of deoxymyoglobin (Mb) and deoxyhemoglobin (Hb) we derive electronic configurations and their mutual spin-orbit coupling. From the temperature dependent molecular electric field gradient (EFG) tensor we calculate temperature dependent quadrupole splittings, E q(T), asymmetry parameters, (T), and orientations of the EFG component V zz(T) with respect to the heme group. Comparing theoretical and experimental data we find a molecular electronic structure, which then is used to compute temperature dependent magnetic susceptibilities, (T). Theoretical and experimental (T) data are in reasonable agreement. From the consistency of our model calculations with experimental results we conclude that iron in Mb and Hb probably is pentacoordinated and considerably out of the heme plane by 0.4–0.8 Å.Supported in part by Stiftung Volkswagenwerk, by Deutsche Forschungsgemeinschaft, by the European Molecular Biology Organization, by an award from the Biomedical Sciences Support Grant at the University of Utah, and the National Science Foundation.  相似文献   

5.
6.
Semiempirical self-consistent-field molecular-orbital calculations are carried out for six iron-pentacyanide complexes and are used to interpret their experimental Mössbauer quadrupole splittings. Probable orientations are identified for the C6H 5 ? and NO 2 ? groups in Fe(CN)5NOC6H 5 ?3 and Fe(CN)5NO 2 ?4 . Calculations on Fe(CN)5NO?2 and Fe(CN)5NO?3 can simultaneously be brought into agreement with experiment by reparametrization to make the NO group more positively charged. All the calculations indicate the importance of including all the Fe 3d and 4p orbitals in the calculations and of considering neighboring-atom effects.  相似文献   

7.
8.
9.
10.
11.
Reaction of iron powder with 1,3,4,7-tetramethylisoindole at 350° affords the square planar complex octamethyl-tetrabenzporphyriniron(II), whose magnetic moment indicates a spin quintet ground state. Mössbauer measurements at 4.2°K in an applied magnetic field of 50 kG show that the electric field gradient at iron is positive and axially symmetric, consistent with a 5B2g ground term. The bistetrahydrofuran adduct is also high spin, whereas the bispyridine adduct is diamagnetic with 1A1g ground state. Comparisons are made with data for the related tetraphenylporphiniron(II) and phthalocyanineiron(II) derivatives.  相似文献   

12.
Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of colorimetric methods for Fe(II) measurements. To overcome this challenge we developed a hybrid oxidimetric/colorimetric approach, using Ag(I) as the oxidimetric reagent for determination of Fe(II) and 1,10-phenanthroline as the colorimetric reagent for determination of total Fe. This approach, which allows determination of Fe(II) and total Fe on the same sample, was tested on a series of four geochemical reference materials and then applied to the analysis of Fe(Ni) spinel crystals isolated from simulated high-level-waste (HLW) glass and of several reagent magnetites. Results for the reference materials were in excellent agreement with recommended values, with the exception of USGS BIR-1, for which higher Fe(II) values and lower total Fe values were obtained. The Fe(Ni) spinels showed Fe(II) values at the detection limit (ca. 0.03 wt% Fe) and total Fe values higher than obtained by ICP-AES analysis after decomposition by lithium metaborate/tetraborate fusion. For the magnetite samples, total Fe values were in agreement with reference results, but a wide range in Fe(II) values was obtained indicating various degrees of conversion to maghemite. Formal comparisons of accuracy and precision were made with 13 existing methods. Accuracy for Fe(II) and total Fe was at or near the top of the group. Precision varied with the parameter used to measure it but was generally in the middle to upper part of the group for Fe(II) while that for total Fe ranged from the bottom of the group to near the top.  相似文献   

13.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   

14.
Summary An investigation was made of the dependence of the yield G in the oxidation of aqueous solutions of ferrous iron on various factors. The limits within which the enhanced-G effect is observed and the accuracy with which the effect can be measured were established.  相似文献   

15.
16.
A solvent extraction method was employed to determine ferrous and ferric iron in aqueous samples. Fe3+ is selectively extracted into the organic phase (n-heptane) using HDEHP (bis(2-ethylhexyl) hydrogen phosphate) and is then stripped using a strong acid. After separation, both oxidation states and the total iron content were determined directly by ICP-MS analysis. This extraction method was refined to allow determination of both iron oxidation states in the presence of strong complexing ligands, such as citrate, NTA and EDTA. The accuracy of the method was verified by crosschecking using a refinement of the ferrozine assay. Presented results demonstrate the ability of the extraction method to work in a microbiological system in the presence of strong chelating agents following the bioreduction of Fe3+ by the Shewanella alga BrY. Based on the results we report, a robust approach was defined to separately analyze Fe3+ and Fe2+ under a wide range of potential scenarios in subsurface environments where radionuclide/metal contamination may coexist with strongly complexing organic contaminants.  相似文献   

17.
The ab initio UHF method has been employed to calculate equilibrium geometries and isotopic hyperfine coupling constants for the radicals PH2, PF2, PH4 and PF4.  相似文献   

18.
Journal of Thermal Analysis and Calorimetry - Ferrous ( $$\hbox {Fe}^{2+}$$ ) and ferric ( $$\hbox {Fe}^{3+}$$ ) iron content in mineral samples was determined from total iron (as obtained, for...  相似文献   

19.
The electronic structure, based on DFT calculations, of a range of FeIV=O complexes with two tetra- (L1 and L2) and two isomeric pentadentate bispidine ligands (L3 and L4) is discussed with special emphasis on the relative stability of the two possible spin states (S = 1, triplet, intermediate-spin, and S = 2, quintet, high-spin; bispidines are very rigid diazaadamantane-derived 3,7-diazabicyclo[3.3.1]nonane ligands with two tertiary amine and two or three pyridine donors, leading to cis-octahedral [(X)(L)FeIV=O]2+ complexes, where X = NCCH3, OH2, OH-, and pyridine, and where X = pyridine is tethered to the bispidine backbone in L3, L4). The two main structural effects are a strong trans influence, exerted by the oxo group in both the triplet and the quintet spin states, and a Jahn-Teller-type distortion in the plane perpendicular to the oxo group in the quintet state. Due to the ligand architecture the two sites for substrate coordination in complexes with the tetradentate ligands L1 and L2 are electronically very different, and with the pentadentate ligands L3 and L4, a single isomer is enforced in each case. Because of the rigidity of the bispidine ligands and the orientation of the "Jahn-Teller axis", which is controlled by the sixth donor X, the Jahn-Teller-type distortion in the high-spin state of the two isomers is quite different. It is shown how this can be used as a design principle to tune the relative stability of the two spin states.  相似文献   

20.
Determinations of the aqueous iron species Fe(II) and Fe(III) are essential for a fully-informed understanding of redox processes involving iron. Most previous methods for speciation of iron have been based on the calorimetric determination of Fe(II) followed by reduction of Fe(III) and analysis for total iron. The indirect determination of Fe(III) and the consumption of relatively large sample volumes have limited the accuracy and utility of such methods. A method based on ion-chromatography has been developed for simultaneous direct determination of Fe(II) and Fe(III). Sample pretreatment involves only conventional filtration and acidification. No interferences with the iron(II) determination were found; in determination of iron(III) the only interference observed was an artifact peak (of unknown origin) that occurred only when iron(II) was present, and had an area that was a function of the iron(II) concentration and could hence be corrected for. Solutions of iron(II) free from iron(III) can be prepared by treatment with a mixture of hydrogen and nitrogen in the presence of palladium black as catalyst, to reduce the iron(III). Photoreduction of iron(III) in acidified samples increases the Fe(II)/Fe(III) ratio; no means of circumventing this effect is known, other than storing the samples in the dark and analysing them as soon as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号