首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, Fe3O4 nanoparticles were coated with 3-mercaptopropanoic acid (MPA) through a simple in-situ method and subsequently oxidized by H2O2/H2SO4 to obtain a novel acid magnetic catalyst (Fe3O4/SMPA). This catalyst exhibited high catalytic activity in the one-pot synthesis of different 3,4-dihydropyrimidin-2(1H)-ones under mild and solvent-free conditions, along with excellent level of reusability.  相似文献   

2.
l ‐Proline has been successfully anchored on the surface of magnetic nanoparticles and characterized using powder X‐ray diffraction, scanning electron microscopy, vibrating sample magnetometry and Fourier transform infrared spectroscopy. These nanoparticles as a chiral catalyst have been employed to promote the direct asymmetric Mannich reaction. The corresponding products are obtained in high yields with high level of diastereoselectivity (up to 99:1 dr) in the presence of Fe3O4– l ‐proline. Also this heterogeneous catalyst can be recovered easily and reused many times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A Nafion-H catalyzed, single step and environmentally friendly process for synthesis of dihydropyrimidinones is described. This adopted protocol for Biginelli reaction has the advantages of reusability of the catalyst, high yields and ease of separation of pure products.  相似文献   

4.
An efficient method for the Biginelli reaction of aldehydes, acetoacetate esters and urea employing tetraethyl orthosilicate in the presence of ferric chloride is described. These improved reaction conditions allow the preparation of a wide variety of substituted dihydropyrimidinones (including sterically encumbered ones) in high yields and purity under mild reaction conditions.  相似文献   

5.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

6.
Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction   总被引:1,自引:0,他引:1  
The synthesis of 3,4-dihydropyrimidinone derivatives was achieved in good to excellent yields using phenylboronic acid as catalyst to promote the Biginelli three-component condensation of a diversity of aromatic aldehydes, ethyl acetoacetate and urea or thiourea.  相似文献   

7.
An efficient procedure for the synthesis of new chromenes by the multicomponent reaction of aldehydes, 4‐hydroxycoumarin and 2‐hydroxynaphthalene‐1,4‐dione in the presence of an ionic liquid supported on Fe3O4 nanoparticles is described. The ionic liquid supported on Fe3O4 nanoparticles as a magnetic catalyst gives products in high yields. Significant features of this method are: short reaction times, excellent yields, green method and use of an effective catalyst that can be recovered and reused many times without loss of its catalytic activity.  相似文献   

8.
A mild and efficient catalytic method has been developed for the synthesis of 3,4-dihydropyrimidin-2 (1H)-ones (DHPM) by a one-pot three-component cyclocondensation reaction using molybdophosphoric acid (MPA) supported on Y zeolite in high to excellent yields. The reaction investigated in the presence of molybdophosphoric acid encapsulated in the supercage of zeolite for comparison. In the second method, no appreciable progress was observed due to large size of dihydropyrimidinone compounds towards the supercage dimension of Y zeolite. In addition, the catalyst was recovered and reused for several times without efficient loss in catalytic activity.  相似文献   

9.
Surface functionalization of magnetic nanoparticles is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. We have conveniently loaded sulfonic acid groups on amino‐functionalized Fe3O4 nanoparticles affording sulfamic acid‐functionalized magnetic Fe3O4 nanoparticles (MNPs/DAG‐SO3H) as an active and stable magnetically separable acidic nanocatalyst, which was characterized using X‐ray diffraction, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, scanning and transmission electron microscopies, vibrating sample magnetometry and elemental analysis. The catalytic activity of MNPs/DAG‐SO3H was probed through one‐pot synthesis of N‐substituted pyrroles from γ‐diketones and primary amines in aqueous phase at room temperature. The heterogeneous catalyst could be recovered easily by applying an external magnet device and reused many times without significant loss of its catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Research on Chemical Intermediates - Sulfamic acid supported on Fe3O4@SiO2 superpara magnetic nanoparticles was successfully applied as a recyclable solid acid catalyst with a large density of...  相似文献   

12.
Cu(II)–Schiff base complex‐functionalized magnetic Fe3O4 nanoparticles were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy techniques. This compound acts as a highly active and selective catalyst for the oxidation of sulfides and thiols. These reactions can be carried out in ethanol or solvent‐free conditions in the presence of hydrogen peroxide with complete selectivity and very high conversion under mild reaction conditions. The designed catalytic system prevents effectively the over‐oxidation of sulfides to sulfones. Separation and recycling can also be easily done using a simple magnetic separation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
We describe the synthesis of a novel Fe3O4/amidoxime (AO)/Pd nanocatalyst by grafting of AO groups on Fe3O4 nanoparticles and subsequent deposition of Pd nanoparticles. Prior to grafting of AO, the 2‐cyanoethyl‐functionalized Fe3O4 nanoparticles prepared through combining 2‐cyanoethyltriethoxysilane and Fe3O4 were treated with hydroxylamine. The AO‐grafted Fe3O4 nanoparticles were then used as a platform for the deposition of Pd nanoparticles. The catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, wavelength‐ and energy‐dispersive X‐ray spectroscopies and inductively coupled plasma analysis. Fe3O4/AO/Pd is novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
An efficient procedure for the preparation of 2-amino-3-cyano-4H-chromen-4-yl phosphonate derivatives via a three-component reaction of salicylaldehyde, malononitrile and trialkyl phosphites or diethyl phosphite using inexpensive and environmentally friendly imidazole as organocatalyst has been reported. Beside excellent yields and easy workup, the reaction is done in an almost neutral medium.  相似文献   

15.
Three-dimensional (3D) N-doped graphene aerogel (N-GA)-supported Fe(3)O(4) nanoparticles (Fe(3)O(4)/N-GAs) as efficient cathode catalysts for the oxygen reduction reaction (ORR) are reported. The graphene hybrids exhibit an interconnected macroporous framework of graphene sheets with uniform dispersion of Fe(3)O(4) nanoparticles (NPs). In studying the effects of the carbon support on the Fe(3)O(4) NPs for the ORR, we found that Fe(3)O(4)/N-GAs show a more positive onset potential, higher cathodic density, lower H(2)O(2) yield, and higher electron transfer number for the ORR in alkaline media than Fe(3)O(4) NPs supported on N-doped carbon black or N-doped graphene sheets, highlighting the importance of the 3D macropores and high specific surface area of the GA support for improving the ORR performance. Furthermore, Fe(3)O(4)/N-GAs show better durability than the commercial Pt/C catalyst.  相似文献   

16.
17.
To address the obstacles facing the use of palladium‐based homogeneous and heterogeneous catalysts in C─C cross‐coupling reactions, a novel semi‐heterogeneous support was developed based on hyperbranched poly(ethylene glycol)‐block ‐poly(citric acid)‐functionalized Fe3O4 magnetic nanoparticles (Fe3O4@PCA‐b ‐PEG). Because of the surface modification of the Fe3O4 nanoparticles with amphiphilic and hyperbranched polymers (PCA‐b ‐PEG), these hybrid materials are not only soluble in a wide range of solvents (e.g. water, ethanol and dimethylformamide) but also are able to trap Pd2+ ions via complex formation of free carboxyl groups of the PCA dendrimer with metal ions. The reduction of trapped palladium ions in the dendritic shell of Fe3O4@PCA‐b ‐PEG leads to immobilized palladium nanoparticles. The morphology and structural features of the catalyst were characterized using various microscopic and spectroscopic techniques. The catalyst was effectively used in the palladium‐catalysed Mizoroki–Heck coupling reaction in water as a green solvent. In addition, the catalyst can be easily recovered from the reaction mixture by applying an external magnetic field and reused for more than ten consecutive cycles without much loss in activity, exhibiting an example of a sustainable and green methodology.  相似文献   

18.
Fe3O4/ZnMg(Al)O solid base catalyst was prepared by calcining ZnMgAl‐LDHs grown on the surface of magnetic Fe3O4 synthesized by chemical coprecipitation. The magnetic property of the catalyst was studied by vibrating sample magnetometer. The results showed that the catalyst possessed excellent magnetic responsivity, and it could be recovered by external magnetic field. The magnetic catalyst was also characterized by ICP, TG‐DTG, XRD, SEM, EDS, TEM and N2 absorption‐desorption. It was found that the catalyst showed a unique porous structure. The reaction conditions affecting biodiesel yield were investigated, the biodiesel yield reached 94% was obtained under the optimal conditions. The biodiesel yield was still above 82% after 7 times of regeneration, and the catalyst can be easily separated and recycled.  相似文献   

19.
α-Glucosidase was stereoscopically immobilized on the surface of Fe3O4 magnetic nanoparticles, which was modified with APTES, using GA as a cross-linker. This established method had a broad application prospect for screening of enzyme inhibitors.  相似文献   

20.
Immobilized sulfuric acid on magnetic Fe3O4 nanoparticles (Fe3O4 MNPs‐OSO3H) as a new solid acid nanocomposite was successfully synthesized and its catalytic activity in a series of condensation reactions was studied. High catalytic activity, simple separation from reaction mixture by an external magnet and good reusability are several eco‐friendly advantages of this catalytic system. It is noteworthy that this catalytic system is applicable to a wide range of spectrum of aromatic aldehydes, and the desired products were obtained in good to excellent yields under mild conditions. The use of ecofriendly solvents makes also this synthetic protocol ideal and fascinating from the environmental point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号