首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous paper, a method for preparing enormous surface-enhanced Raman scattering (SERS) active substrates through the aggregation of silver particles trapped at an air-water interface was reported. Here, further efforts were devoted to investigate the origin of assembling silver particle films by adsorbing nanoparticles from bulk colloids to the air-water interface. It was revealed that it is thermodynamically favorable for a colloidal particle in bulk colloids to adsorb to the air-water interface; however, a finite sorption barrier between it and the nearby particles usually restrains the adsorption process. When an electrolyte such as KCl, which is commonly used as an activating agent for additional SERS enhancement, was added into silver colloids, it largely reduced the sorption barrier. Thus, silver nanoparticles can break through the sorption barrier, pop up, and be trapped at the air-water interface. The trapped silver particles are more inclined to aggregate at the interface than those in bulk colloids due to the increase of van der Waals forces and the reduction of electrostatic forces. The morphology of the as-prepared silver particle films was characterized by scanning electron microscope, and their SERS activity was tested using NaSCN as a probe molecule. The surface enhancement of the silver particle films is about 1-2 orders of magnitude higher compared with that of silver colloids, because most of the silver particles in the films are in the aggregation form that provides enormous SERS enhancement. Furthermore, the stability of such type of films is much better that of colloid solutions.  相似文献   

2.
We discuss qualitative and quantitative aspects of the effective interactions between micrometer-sized colloids of different types trapped at fluid interfaces, with a particular emphasis on the relation between experimental and theoretical results. For colloids of that size, the interactions can broadly be classified into "direct" ones such as electrostatic, magnetic, or elastic ones. Such interactions appear also for colloids in bulk systems, but they are modified at interfaces. On the other hand, the presence of a fluid interface generates in addition interface-mediated (capillary) interactions which are either induced by nonspherical colloid shapes or by the "direct" interactions.  相似文献   

3.
Within a general theoretical framework, we study the effective, deformation-induced interaction between two colloidal particles trapped at a fluid interface in the regime of small deformations. In many studies, this interaction has been computed with the ansatz that the actual interface configuration for the pair is given by the linear superposition of the interface deformations around the single particles. Here, we assess the validity of this approach and compute the leading term of the effective interaction for a large interparticle separation beyond this so-called superposition approximation. As an application, we consider the experimentally relevant case of interface deformations owing to the electrostatic field emanating from charged colloidal particles. In mechanical isolation, i.e., if the net force acting on the total system consisting of the particles plus the interface vanishes, the superposition approximation is actually invalid. The effective capillary interaction is governed by contributions beyond this approximation and turns out to be attractive. For sufficiently small surface charges on the colloids, such that linearization is strictly valid, and at asymptotically large separations, the effective interaction does not overcome the direct electrostatic repulsion between the colloidal particles.  相似文献   

4.
Surface forces between an air bubble and a flat mica surface immersed in aqueous electrolyte solutions have been investigated using a modified surface force apparatus. An analysis of the deformation of the air bubble with respect to the mutual position of the bubble and the mica surface, the capillary pressure, and the disjoining pressure allows the air-liquid surface electrical potential to be determined. The experiments show that a long-range, double-layer repulsion acts between the mica (which is negatively charged) and an air bubble in water and in various electrolyte solutions at low concentration, thereby indicating that the air bubble surface is negatively charged. However, there is clear evidence that charge regulation occurs at the air-water interface to maintain a constant surface potential, and as a result of this, the charge at this interface changes from negative to positive as the bubble approaches the mica surface. Because of the attraction that arises as a result of the charge reversal, a finite force is required to separate the bubble from the mica, though the mica remains wetted by the aqueous phase. At the low concentrations investigated, the potential on the gas-liquid interface is independent of the electrolyte type within experimental uncertainty.  相似文献   

5.
The present work studies the role of ionic size in the interactions between the electrical double layers of colloids immersed into electrolyte solutions of monovalent ions. Such interactions are studied by means of Monte Carlo (MC) simulations and the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Despite the omission of the steric effects and some other features of real electrolyte solutions, DLVO theory is known to work qualitatively well for 1:1 electrolyte solutions. However, this affirmation is based on previous tests where an ionic diameter around 0.4 nm was taken for all ionic species. In contrast, some experimental studies suggest that larger hydrated ions should be considered and even specified for each type of ion. In this work, the importance of ionic size is analyzed by applying the primitive model of electrolyte to the intermediate region between a pair of equally charged infinite planar surfaces. The double layer interactions were calculated from the ionic densities at the distance of closest approach to the charged surfaces, this method constitutes an alternative to the traditional calculations at the midplane. Our MC simulations predict the existence of negative net pressures for monovalent electrolytes in the case of zero charge density. In addition, MC simulations reveal some disagreements with theoretical predictions for ionic diameters larger than 0.4 nm. These discrepancies can become significant if surface charge density is large enough due to the restructuration of the double layer. The physical mechanisms for these deviations are also discussed.  相似文献   

6.
The electrode electrolyte interface is modelled by a mixture of charged and dipolar hard spheres against a planar, charged hard wall. A mean field theory is used to describe the coulombic interactions while steric effects are given by the Percus–Yevick theory. The underlying Percus–Yevick theory for three uncharged species against a planar wall is derived by using the standard method developed by Henderson et al. (D. Henderson, F.F. Abraham, J.A. Barker, Mol. Phys., 31 (1976) 1291) and compared with Monte-Carlo simulations. Although the Percus–Yevick theory has shortcomings, the theory provides an estimate of how the high density of the solvent influences the structural and thermodynamic properties. Consideration of the solvent molecules introduces oscillations in the density distribution of the ions and solvent while the different molecular sizes and ion valences lead to an asymmetry in the differential capacitance.  相似文献   

7.
In this paper we propose a mean-field theory to calculate the solvation free energy of a charged solute imbedded in a complex multi-component solvent. We considered a solvent made up of a mixture of small (electrolyte solution) and large (polymer) components. The presence of macromolecules ensures reduced mixing entropy among the different solvent components, an effect due to polymer connectivity. The reduced entropy favours strong preferential distribution of a particular solvent even in the presence of weak preferential solute–solvent interactions. In addition, two energy terms must be considered: (a) the interaction between the solute electrostatic potential and the electrolyte solution and (b) the formation of a polymer–solute interface. Because of the different dielectric permittivity of the solvent components, the electrolyte and polymer distribution functions are strongly coupled: ions, indeed, are more solvated in regions of higher local dielectric permittivity arising from the inhomogeneous mixing of solvent and polymer. We combined together the different energy terms in the framework of the de Gennes free energy functional for polymer solutions along with a generalised Poisson–Boltzmann equation developed for inhomogeneous dielectric media. Moreover, the preferential electrolyte solvation in regions of greater polarity was considered by an extension of the Born equation. Setting the polymer dielectric permittivity smaller than the solvent one and making null the specific polymer–solute interactions, we calculated enhanced electrolyte concentration and reduced polymer concentration near the solute surface on raising the solute surface charge density. The theory shows also the breakdown of the widely used separation between electrostatic and surface tension-dependent contributions to solvation energy when non-ideal mixed solvents are considered. In fact, according to the model, the surface tension of such mixed solvents strongly depends on the solute surface charge density: at high potentials the interfacial tension may increase rather than decrease on raising the polymer volume fraction. The theoretical results have been compared with experimental data on polymer+electrolyte solution surface tension and with solubility data of colloidal particles. The comparison evidences the complex behaviour of multi-component solvents going well beyond the trivial weighted average of the dielectric permittivity and surface tension of the isolated chemical components. Deviations from the simple behaviour predicted by an average picture of multi-component solvents could be understood by developing more sophisticated, but still simple, approaches like that proposed in this paper.Contribution to the Jacopo Tomasi Honorary Issue. This paper is dedicated to Jacopo Tomasi. I learned much of the difficult art of transforming complex problems into simple models after reading his early works on solvation energy.  相似文献   

8.
We develop an efficient simulation method to study suspensions of charged spherical colloids using the primitive model. In this model, the colloids and the co- and counterions are represented by charged hard spheres, whereas the solvent is treated as a dielectric continuum. In order to speed up the simulations, we restrict the positions of the particles to a cubic lattice, which allows precalculation of the Coulombic interactions at the beginning of the simulation. Moreover, we use multiparticle cluster moves that make the Monte Carlo sampling more efficient. The simulations are performed in the semigrand canonical ensemble, where the chemical potential of the salt is fixed. Employing our method, we study a system consisting of colloids carrying a charge of 80 elementary charges and monovalent co- and counterions. At the colloid densities of our interest, we show that lattice effects are negligible for sufficiently fine lattices. We determine the fluid-solid melting line in a packing fraction eta-inverse screening length kappa plane and compare it with the melting line of charged colloids predicted by the Yukawa potential of the Derjaguin-Landau-Verwey-Overbeek theory. We find qualitative agreement with the Yukawa results, and we do not find any effects of many-body interactions. We discuss the difficulties involved in the mapping between the primitive model and the Yukawa model at high colloid packing fractions (eta>0.2).  相似文献   

9.
Moving air-water interfaces can detach colloidal particles from stationary surfaces. The objective of this study was to quantify the effects of advancing and receding air-water interfaces on colloid detachment as a function of interface velocity. We deposited fluorescent, negatively charged, carboxylate-modified polystyrene colloids (diameter of 1 μm) into a cylindrical glass channel. The colloids were hydrophilic with an advancing air-water contact angle of 60° and a receding contact angle of 40°. After colloid deposition, two air bubbles were sequentially introduced into the glass channel and passed through the channel at different velocities (0.5, 7.7, 72, 982, and 10,800 cm/h). The passage of the bubbles represented a sequence of receding and advancing air-water interfaces. Colloids remaining in the glass channel after each interface passage were visualized with confocal microscopy and quantified by image analysis. The advancing air-water interface was significantly more effective in detaching colloids from the glass surface than the receding interface. Most of the colloids were detached during the first passage of the advancing air-water interface, while the subsequent interface passages did not remove significant amounts of colloids. Forces acting on the colloids calculated from theory corroborate our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface movement were stronger than during the receding movement. Theory indicates that, for hydrophilic colloids, the advancing interface movement generally exerts a stronger detachment force than the receding, except when the hysteresis of the colloid-air-water contact angle is small and that of the channel-air-water contact angle is large.  相似文献   

10.
Orthokinetic aggregation of colloids trapped at the air–liquid interface was studied by direct imaging in a couette cell. This method allowed us to follow the temporal evolution of both the cluster-mass distribution and the cluster structure at a shear rate where Brownian aggregation is suppressed. The interactions between the monodisperse latex particles floating at the air–liquid interface were controlled either by varying the electrolyte concentration or by creating a bidisperse system through the addition of small particles. The results show that the clusters in all of the systems are characterized by a high fractal dimension, indicating that the clusters are rearranged and densified by the shear. Kinetic analysis suggests that aggregation of monodisperse systems mainly proceeds through homogeneous aggregation, i.e., large clusters sticking to other large clusters. The bidisperse system, finally, with a size ratio around 10, favored a more heterogeneous aggregation among small and large clusters throughout the aggregation process; a slightly lower fractal dimension was observed compared to the strongly aggregated monodisperse system.  相似文献   

11.
The interactions between nonpolar surfaces coated with the nonionic surfactant hexaoxyethylene dodecyl ether C12E6 were investigated using two techniques and three different types of surfaces. As nonpolar surfaces, the air/water interface, silanated negatively charged glass, and thiolated uncharged gold surfaces were chosen. The interactions between the air/water interfaces were measured with a thin film pressure balance in terms of disjoining pressure as a function of film thickness. The interactions between the solid/liquid interfaces were determined using a bimorph surface force apparatus. The influence of the nature of the surface on the interaction forces was investigated at surfactant concentrations below and above the cmc. The adsorption of the nonionic surfactant on the uncharged thiolated surface does not, as expected, lead to any buildup of a surface charge. On the other hand, adsorption of C12E6 on the charged silanated glass and the charged air/water interface results in a lowering of the surface charge density. The reduction of the surface charge density on the silanated glass surfaces is rationalized by changes in the dielectric permittivity around the charged silanol groups. The reason for the surface charge observed at the air/water interface as well as its decrease with increasing surfactant concentration is discussed and a new mechanism for generation of OH- ions at this particular interface is proposed.  相似文献   

12.
Electrostatic interactions strongly affect the immersion depth of nanoparticles into an interface. We prove this statement by measuring the diffusion constant of charged nanoparticles at a sodium chloride solution/air interface. Interfacial diffusion of nanoparticles slows down with increasing ionic strength of the sodium chloride solution. Hydrodynamic calculations are used to estimate the immersion depth from the diffusion constant, suggesting that nanoparticles with a carboxylate surface are only slightly immersed into a bare air/water interface. With increasing molarities of sodium chloride, the immersion depth increases to complete immersion for a 10(-2) molar solution. Our experiments show that the location of nanoparticles at interfaces is determined by an intricate interplay between the electrostatic properties of the solution/air interface, the solution/solid interface, and the classical contact angle.  相似文献   

13.
Within linearized Poisson-Boltzmann theory, we study the disjoining pressure of two oppositely charged parallel objects (membranes and colloidal platelets) in a 1:1 electrolyte, with a focus on the effects of their finite thickness. This extension of the standard Gouy-Chapman model from an interacting pair of double layers to a quartet (one on each side of the two interacting objects) is shown to enhance the regime of attractive interactions significantly, in particular, when the separation and the thickness are on the order of the Debye length of the solvent, provided the dielectric mismatch between objects and solvent is not too extreme. The enhancement of attractions occurs for objects with fixed charge as well as for those that exhibit charge regulation but not for those with a constant surface potential. The underlying mechanism for this enhancement for thin objects is the transfer of net ionic charge from the electrolyte in between to the other sides. For biological membranes in water, this effect is small; however, it is due to strong image charge effects.  相似文献   

14.
The composition and properties of the adsorption films of dodecylammonium chloride/sodium dodecyl sulfate at the air/water interface depend on interactions between the film molecules and equilibria in the bulk phase (monomer-micelle and/or monomerprecipitate equilibria).The negative value of surface molecular interaction parameter mon calculated using the regular solution theory indicates strong attractive interactions between adsorbed molecules. Electrostatic interactions between oppositely charged ionic head groups enhance the adsorption of surfactants and decrease the minimum molar area of surfactant molecules at the air/water interface. The addition of an oppositely charged surfactant enhances packing at the air/water interface and transition from a liquid expanded to a liquid condensed state. Surface potential measurements reveal positive values for the mixtures investigated, implying the cationic surfactant ions are closer to the surface than the anionic ones.  相似文献   

15.
Aqueous thin film studies and surface tension measurements on a mixed surfactant system consisting of poly(ethylene oxide) (PEO), which was chosen as a model flotation frother, and potassium ethyl xanthate, which was chosen as a model flotation collector, enable the interaction between the two surfactants at the air/solution interface to be elucidated.

For the film containing the non-ionic frother, the interface was charged and addition of low concentrations of xanthate acted as a common electrolyte and reduced the thickness of the film, inducing rupture. However, at high xanthate collector concentrations, the negatively charged xanthate was found to interact with the non-ionic PEO causing an accumulation of negative charge at the air/solution interface. Higher frother concentrations were necessary to produce non-rupturing thin films upon increasing the xanthate concentration.  相似文献   


16.
Surface properties of mixtures of charged platelike colloids and salt in contact with a charged planar wall are studied within density functional theory. The particles are modeled by hard cuboids with their edges constrained to be parallel to the Cartesian axes corresponding to the Zwanzig model [J. Chem. Phys. 39, 1714 (1963)] and the charges of the particles are concentrated at their centers. The density functional applied is an extension of a recently introduced functional for charged platelike colloids. It provides a qualitative approach because it does not determine the relation between the actual and the effective charges entering into the model. Technically motivated approximations, such as using the Zwanzig model, are expected not to influence the results qualitatively. Analytically and numerically calculated bulk and surface phase diagrams exhibit first-order wetting for sufficiently small macroion charges and isotropic bulk order as well as first-order drying for sufficiently large macroion charges and nematic bulk order. The asymptotic wetting and drying behaviors are investigated by means of effective interface potentials which turn out to be asymptotically the same as for a suitable neutral system governed by isotropic nonretarded dispersion forces. Wetting and drying points as well as predrying lines and the corresponding critical points have been located numerically. A crossover from monotonic to nonmonotonic electrostatic potential profiles upon varying the surface charge density has been observed. Nonmonotonic electrostatic potential profiles are equivalent to the occurrence of charge inversion. Due to the presence of both the Coulomb interactions and the hard-core repulsions, the surface potential and the surface charge do not vanish simultaneously, i.e., the point of zero charge and the isoelectric point of the surface do not coincide.  相似文献   

17.
The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH2)11(OCH2CH2)6OMe (EG6OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C), pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol %) show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.  相似文献   

18.
Two-dimensional concentrations of adsorbed ions in double-layers at charged interfaces, especially when appreciable specific adsorption obtains, are equivalent to quite substantial (1–4 M) three-dimensional concentrations in regular electrolyte solutions. Under such conditions, ion-specific Gurney co-sphere overlap interactions give an important contribution to the non-ideal free energy of electrolytes in solution. It is proposed that similar interaction effects arise two-dimensionally in double-layers, giving rise to a contribution to the lateral interaction energy in monolayer arrays of ions. Three types of calculations are described by which these interaction effects can be evaluated. One is applied to some recent data on tetrapropylammonium ion adsorption at Hg, where hydrophobic interactions arise.Related problems concerned with solvent dipole orientation in the inner layer, when appreciable surface concentrations of hydrated ions are present, are referred to. The probable role of field-gradient/quadrupole interactions is noted.  相似文献   

19.
The interaction between a colloidal polystyrene particle mounted on an AFM cantilever and a hydrophilic and a hydrophobic surface in aqueous solution is investigated. Despite the apparent simplicity of these two types of systems a variety of different types of interactions are observed. The system containing the polystyrene particle and a hydrophilic surface shows DLVO-like interactions characteristic of forces between charged surfaces. However, when the surface is hydrophobized the interaction changes dramatically and shows evidence of a bridging air bubble being formed between the particle and the surface. For both sets of systems, plateaus of constant force in the force curves are obtained when the particle is retracted from the surface after being in contact. These events are interpreted as a number of individual polystyrene molecules that are bridging the polystyrene particle and the surface. The plateaus of constant force are expected for pulling a hydrophobic polymer in a bad (hydrophilic) solvent. The plateau heights are found to be of uniform spacing and independent of the type of surface, which suggests a model by which collapsed polymers are extended into the aqueous medium. This model is supported by a full stretching curve showing also the backbone elasticity and a stretching curve obtained in pentanol, where the plateau changes to a nonlinear force response, which is typical for a polymer in a good or neutral solvent. We suggest that these polymer bridges are important in particular for the interaction between polystyrene and the hydrophilic surface, where they to some extent counteract the long-range electrostatic repulsion.  相似文献   

20.
Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid interactions at the air/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic interactions in protein adsorption. The rate of adsorption of lysozyme to the air/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic interactions between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare air/water interface and suggested very little interaction between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure air/water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号