首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
We demonstrate the use of vapor phase deposition to completely encapsulate ionic liquid (IL) droplets within robust polymer shells. The IL droplets were first rolled into liquid marbles using poly(tetrafluoroethylene) (PTFE) particles because the marble structure facilitates polymerization onto the entire surface area of the IL. Polymer shells composed of 1H,1H,2H,2H-perfluorodecyl acrylate cross-linked with ethylene glycol diacrylate (P(PFDA-co-EGDA)) were found to be stronger than the respective homopolymers. Fourier transform infrared spectroscopy showed that the PTFE particles become incorporated into the polymer shells. The integration of the particles increased the rigidity of the polymer shells and enabled the pure IL to be recovered or replaced with other fluids. Our encapsulation technique can be used to form polymer shells onto dozens of droplets at once and can be extended to encapsulate any low vapor pressure liquid that is stable under vacuum conditions.  相似文献   

2.
Submicrometer-sized pH-responsive sterically stabilized polystyrene (PS) latex particles were synthesized by dispersion polymerization in isopropyl alcohol with a poly[2-(diethylamino)ethyl methacrylate]- (PDEA-) based macroinitiator. These PDEA-PS latexes were extensively characterized with respect to their particle size distribution, morphology, chemical composition, and pH-responsive behavior. Millimeter- and centimeter-sized "liquid marbles" with aqueous volumes varying between 15 μL and 2.0 mL were readily prepared by rolling water droplets on the dried PDEA-PS latex powder. The larger liquid marbles adopted nonspherical shapes due to gravitational forces; analysis of this deformation enabled the surface tension to be estimated. Scanning electron microscopy and fluorescence microscopy studies indicated that flocs of the PDEA-PS particles were adsorbed at the surface of these water droplets, leading to stable liquid marbles. The relative mechanical integrity of the liquid marbles prepared from alkaline aqueous solution (pH 10) was higher than those prepared from acidic aqueous solution (pH 2) as judged by droplet roller experiments. These liquid marbles exhibited long-term stability (over 1 h) when transferred onto the surface of liquid water, provided that the solution pH of the subphase was above pH 8. In contrast, the use of acidic solutions led to immediate disintegration of these liquid marbles within 10 min, with dispersal of the PDEA-PS latex particles in the aqueous solution. Thus the critical minimum solution pH required for long-term liquid marble stability correlates closely with the known pK(a) value of 7.3 for the PDEA stabilizer chains. Stable liquid marbles were also successfully prepared from aqueous Gellan gum solution and glycerol.  相似文献   

3.
Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.  相似文献   

4.
Seamless control of resistance to liquid drop movement for polar (water) and nonpolar alkane (n-hexadecane, n-dodecane, and n-decane) probe liquids on substrate surfaces was successfully demonstrated using molten linear poly(dimethylsiloxane) (PDMS) brush films with a range of different molecular weights (MWs). The ease of movement of liquid drops critically depended on polymer chain mobility as it relates to both polymer MW and solvent swelling on these chemically- and topographically identical surfaces. Our brush films therefore displayed lower resistances to liquid drop movement with decreasing polymer MW and surface tension of probe liquid as measured by contact angle (CA) hysteresis and tilt angle measurements. Subsequently, while mobility of water drops was inferior and became worse at higher MWs, n-decane drops were found to experience little resistance to movement on these polymer brush films. Calculating CA hysteresis as Δθ(cos) = cos θ(R) - cos θ(A) (θ(A) and θ(R) are the advancing and receding CAs, respectively) rather than the standard Δθ = θ(A) - θ(R) was found to be advantageous for estimation of the actual dynamic dewetting behavior of various probe liquids on an inclined substrate.  相似文献   

5.
Polymer microcavities with adjustable openings and surface roughness are fabricated on a large scale via single‐hole poly(glycidyl methacrylate) (PGMA) swelling seed particles. The size of openings of these microcavities can be adjusted by changing the amount of hydrophilic monomer, and the degree of surface roughness is easily regulated relying on the adjustment of the polarity of monomer. Furthermore, the morphology of PGMA/poly(styrene‐methacrylic acid) (PGMA/P(S‐MAA)) microparticles from microcavity to erythrocyte shape is controlled by the polarity of seed surface. From transmission electron microscopy images of PGMA/P(S‐MAA) microparticles, a fresh polymer particle appears in the cavity. To confirm this phenomenon, thermal annealing process in dioxane/water solution is carried out. Considering the flexibility of polymers, the openings and closing of the prepared microparticles are regulated following the increase in volume ratio of dioxane/water. Ball‐in‐bowl‐shaped PGMA/P(S‐MAA) microparticles are further presented, which proves secondary nucleation of monomer in the polymerization stage.

  相似文献   


6.
The formation of liquid marbles was studied in the situation where hydrophobic particles coating the marbles "come from air". Droplets of water/ethanol solutions of various concentrations were coated with three kinds of powders: polytetrafluoroethylene, polyvinylidene fluoride and polyethylene. We established that there exists a critical concentration of ethanol, and correspondingly a critical surface tension of the water/ethanol solution allowing formation of liquid marbles. A critical surface tension depends on the kind of the powder. In parallel, wetting transitions of water/ethanol solutions were studied on the layers of the same polymer powders. The onset of wetting transitions on the powders took place at the concentrations of ethanol coinciding with those enabling the formation of liquid marbles. Wetting transitions stipulate the formation of liquid marbles when a droplet is deposited on a layer of hydrophobic powder. This assumption was validated by the experiments performed with di-iodomethane and glycerol.  相似文献   

7.
In this article, the growth of polymer nanoparticles formed at the liquid–vapor interface via vapor phase polymerization is studied. The particles grow by polymer aggregation, which is driven by the surface tension interaction between the liquid and polymer. It is demonstrated that the mechanism of particle growth is determined by whether polymer particles remain at the liquid–vapor interface or submerge into the liquid. The position of the particles depends on the interaction between the polymer and the liquid. For example, the deposition of poly(n‐butyl acrylate) onto poly(dimethyl siloxane) and Krytox liquids leads to the formation of nanoparticles that remain at the liquid–vapor interface. The size of these particles increases as a function of deposition time. The deposition of poly(4‐vinylpyridine) onto poly(dimethyl siloxane) and Krytox leads to the formation of nanoparticles that submerge into the liquid. The size of these particles does not significantly change with deposition time. Our study offers a new rapid, one‐step synthetic approach for fabricating functional polymer nanoparticles for applications in catalysis, photonics, and drug delivery.

  相似文献   


8.
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.  相似文献   

9.
Water and glycerol marbles coated with various powders and immersed in organic liquids gave rise to water-in-oil and glycerol-in-oil Pickering-like emulsions. Non-polar oils such as polydimethylsiloxane, toluene, xylenes and chlorinated solvents supported the formation of emulsions, whereas polar liquids such as dimethylsulfoxide, N,N,-dimethylformamide, acetone and ethanol did not. It is demonstrated that there is a direct contact between a liquid filling the immersed marble and the surrounding liquid. A phenomenological theory of the marbles' sinking into emulsion is proposed.  相似文献   

10.
Poly(vinylidenefluoride)-hexafluoropropylene (PVdF(HFP))-ionic liquid gel electrolytes were prepared using ionic liquids based on 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate and 1-(2-hydroxyethyl)-3-methyl imidazolium hexafluorophosphate. A conventional metathesis reaction was used to prepare these ionic liquids, which have high purity and exhibit a liquid state at room temperature. The prepared polymer-ionic liquid gel proved to be a free-standing and rubbery film in which the degree of transparency differed according to the ratio and type of ionic liquid used. TGA and FTIR analyses confirmed that the solvent, N,N-Dimethylacetamide (DMAC), used for mixing PVdF(HFP) polymer with ionic liquid was almost totally removed during the gelling and drying processes. SEM photographs were taken of the surface structure of the PVdF(HFP)-ionic liquid gel in order to evaluate the morphology of the film's surface according to the mixing ratio and the nature of the ionic liquid. The thermal behaviors of PVdF(HFP)-ionic liquid gels were observed to be similar to those of neat ionic liquids through DSC analysis, and the compatibility between the polymer and ionic liquid was investigated by XRD analysis. The ionic conductivities of all the gels were 10(-3)-10(-5) S cm(-1) in a temperature range of 20-70 degrees C.  相似文献   

11.
The magnetic actuation of deposited drops has mainly relied on volume forces exerted on the liquid to be transported, which is poorly efficient with conventional diamagnetic liquids such as water and oil, unless magnetosensitive particles are added. Herein, we describe a new and additive‐free way to magnetically control the motion of discrete liquid entities. Our strategy consists of using a paramagnetic liquid as a deformable substrate to direct, using a magnet, the motion of various floating liquid entities, ranging from naked drops to liquid marbles. A broad variety of liquids, including diamagnetic (water, oil) and nonmagnetic ones, can be efficiently transported using the moderate magnetic field (ca. 50 mT) produced by a small permanent magnet. Complex trajectories can be achieved in a reliable manner and multiplexing potential is demonstrated through on‐demand drop fusion. Our paramagnetofluidic method advantageously works without any complex equipment or electric power, in phase with the necessary development of robust and low‐cost analytical and diagnostic fluidic devices.  相似文献   

12.
Three different poly(N-acetyliminoethylene) (PNAI) macromonomers containing maleic acid moieties were tested as stabilizers for the preparation of polymer microparticles by dispersion polymerization in a polar media (alcohol/water). A comparative study on the effect of various factors, such as initiator nature and solvency of the reaction medium, on system stability and particle characteristics was performed. Styrene was used as the main monomer and ethanol, isopropanol and 2-butanol as organic solvents. Chemical and photochemical techniques were applied as initiation routes. The photoinitiators allow the synthesis of microparticles with low diameters and narrow size polydispersity in a high yield. The polymerization duration was significantly improved as compared to the methods available in the literature.  相似文献   

13.
皮肤伤口的感染严重威胁患者的生命安全,虽然传统的含有银离子或小分子抗生素的抗菌水凝胶伤口敷料具有广谱的杀菌功效,但这些抗菌水凝胶敷料中的抗菌剂存在一定的生物毒性和耐药性风险,无法满足临床长期使用的要求.咪唑盐类聚离子液体由于其含有较强的正电荷效应以及疏水链段,因此其作为新型的聚合物抗菌剂具有较强的抗菌效果.本研究首先通...  相似文献   

14.
A series of ionic liquids (ILs) are prepared by neutralizing tertiary amines with N,N-bis(trifluoromethanesulfonyl)imide (HTFSI). As demonstrated by thermal and electrochemical characterizations, these ILs have very good temperature stability and a high ionic conductivity, that is, of the order of 10(-2) S cm-1. By incorporating these ILs into a poly(vinylidenfluoride-co-hexafluoropropylene) polymer matrix, membranes with a high melting temperature, high decomposition point and with an ionic conductivity of about 10(-2) S cm-1 at 140 degrees C, are obtained. These IL-based, proton-conducting membranes are proposed as new polymer electrolytes for high-temperature polymer electrolyte membrane fuel cells (PEMFCs).  相似文献   

15.
Recently, production of biocompatible and biodegradable polymer microparticles has been a matter of growing interest in pharmaceutical and food areas such as drug or active compounds delivery. To conduct production of microparticles, polymeric particle coating, impregnation of active compounds in polymeric films, the knowledge of phase behaviour involving the biodegradable polymer in supercritical carbon dioxide in the presence of a modifier may be needed to allow developing new industrial applications. In this sense, the aim of this work was to investigate the phase behaviour of the ternary system formed by the biodegradable polymer poly(ε-caprolactone) in (carbon dioxide + dichloromethane). Experimental phase transition (bubble and cloud point) values were obtained by applying the static-synthetic method using a variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 21 MPa, in the CO2 overall composition range of (25–46) wt%, while polymer concentrations studied were (1, 3, 5, and 7) wt%. For the system investigated, depending on the polymer concentration, vapour–liquid, liquid–liquid, and vapour–liquid–liquid phase transitions were verified.  相似文献   

16.
研究了电化学方法制备的铂微粒弥散的聚2,5-二甲氧基苯胺膜电极对甲醇电氧化的催化行为以及影响催化活性的主要因素。以XPS、SEM表征了这种电极材料的表面结构,结果表明,在酸性介质中,该膜电极对甲醇电氧化有高的催化活性和稳定性。  相似文献   

17.
Diluted polymer solutions can be effectively reconcentrated applying full adsorption/desorption processes. Macromolecules from diluted solutions are quantitatively retained within a bed of appropriate adsorbent. Next, the polymer is released by a high‐strength desorbing liquid that is introduced into the sorbent bed as a narrow pulse. To evaluate the above reconcentration procedure, medium‐polarity polymers, mainly poly(methyl methacrylate)s of various molar mass distributions were chosen as model species. Nonporous silica was used as an adsorbent, toluene and chloroform as adsorbing liquids, and tetrahydrofuran as a desorbing liquid in an HPLC‐like apparatus. The concentration profiles of both the desorbing liquid pulse and desorbed polymer were monitored with the usual LC detectors. On‐line size exclusion chromatography was employed in selected cases to determine molar mass and molar mass distribution of desorbed macromolecules. The effect of some experimental parameters on the reconcentration efficiency was elucidated, viz. the nature of the sample solvent‐adsorbing liquid, flow rate of desorbing liquid, molar mass, molar mass distribution, and nature of reconcentrated polymer, as well as relations among the amount of the polymer to be reconcentrated and the volume of the desorbing liquid pulse. It is shown that very high reconcentration factors can be readily obtained by the full adsorption–desorption procedure if the experimental conditions are carefully optimized. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 267–275, 1999  相似文献   

18.
A new method of reversibly moving CdS nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methacrylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMMA-co-PCdMA) brushes were converted to polystyrene-b-(poly(methyl methacrylate)-co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which CdS nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of CdS nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.  相似文献   

19.
This paper describes a facile technique to pattern reactive microdomains inside polydimethylsiloxane microchannels by utilizing polymer particles as the carrier of functional groups. The air/liquid interface formed in microchannels equipped with microwells exerts lateral force on the particles, trapping particles only inside the wells. We then fix the polymer matrix on the wells by melting the trapped particles to form reactive domains with flexible shapes and high resolution. We employed monodisperse poly(styrene-co-glycidyl methacrylate) microparticles having an epoxy group and patterned various types of microdomains with a resolution of several micrometers. Several tests confirmed the presence of the epoxy group and the flatness of the patterned domain. The presented scheme provides a new way of preparing highly functional microsystems by using simple operations and would be useful for various applications, including local patterning of graft polymers and the site-specific cultivation of cells in a confined space.  相似文献   

20.
We developed a confocal Raman microspectroscopy system combined with a laser trapping technique and applied it to aqueous solutions (H(2)O and D(2)O) of poly(N-isopropylacrylamide) (PNIPA), which is well-known as a representative thermo-responsive polymer, i.e., phase transition/separation between coiled and globular states. By introducing a near-infrared (1064 nm) laser beam into a microscope, PNIPA microparticles were produced at the focused spot of the laser beam, both in H(2)O and D(2)O. By using the present system, we succeeded in obtaining the Raman spectra of PNIPA in the coiled and globular states over a wide wavenumber region (800-3500 cm(-1)) for the first time. For the D(2)O solutions (in which the photothermal effect is negligible and hence the microparticles should be produced purely by the effect of radiation pressure), some significant differences were observed in the Raman spectra for the coiled state, in the globular state, and for laser induced microparticles. By analyzing these spectra in detail, we revealed that the structure of the laser-induced microparticles was analogous to that in the globular state. We also discuss the fundamental mechanism underlying the transformation of the higher order structure of a polymer by radiation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号