首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Röhlsberger  R. 《Hyperfine Interactions》1999,119(1-4):301-304
ATHENA, one of the three approved experiments at the new facility for low energy antiprotons (AD) at CERN, has the primary goal to test CPT invariance by comparing the atomic energy levels of antihydrogen to those of hydrogen. The extended experimental program also contains studies on differences in gravitational acceleration of antimatter and matter. The production of antihydrogen atoms and their spectral response to laser light will be monitored by a sophisticated detector for the end products of antiproton and positron annihilations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

4.
Detailed comparisons of antihydrogen with hydrogen promise to be a fruitful test bed of fundamental symmetries such as the CPT theorem for quantum field theory or studies of gravitational influence on antimatter. With a string of recent successes, starting with the first trapped antihydrogen and recently resulting in the first measurement of a quantum transition in anti-hydrogen, the ALPHA collaboration is well on its way to perform such precision comparisons. We will discuss the key innovative steps that have made these results possible and in particular focus on the detailed work on positron and antiproton preparation to achieve antihydrogen cold enough to trap as well as the unique features of the ALPHA apparatus that has allowed the first quantum transitions in anti-hydrogen to be measured with only a single trapped antihydrogen atom per experiment. We will also look at how ALPHA plans to step from here towards more precise comparisons of matter and antimatter.  相似文献   

5.
The gravitational force on antimatter has never been directly measured. A method is suggested for making this measurement by directing a low-energy beam of neutral antihydrogen atoms through a transmission-grating interferometer and measuring the gravitationally-induced phase shift in the interference pattern. A 1% measurement of the acceleration due to the Earth's gravitational field (¯ g) should be possible from a beam of about 105 or 106 atoms. If more antihydrogen can be made, a much more precise measurement of¯ g would be possible. A method is suggested for producing an antihydrogen beam appropriate for this experiment.  相似文献   

6.
The AEgIS experiment (http://aegis.web.cern.ch) will measure the gravitational acceleration g of antihydrogen. Once performed this could be the first direct test of the gravitational interaction between matter and antimatter. In the AEgIS experiment a beam of antihydrogen will travel horizontally along a path of about 1 m trough a moir?? deflectometer followed by a position sensitive detector. The g value will be obtained measuring the vertical displacement of the annihilation patterns. Before producing the beam, several tasks have to be performed mainly involving positron and electron plasma manipulation and particles cooling in Malmberg-Penning traps. The AEgIS experiment is currently under construction at CERN, meanwhile several tests involving particle manipulation and particle cooling are in progress. In this report some experimental results involving diocotron manipulation of plasma will be presented.  相似文献   

7.
The field of cold antimatter physics has rapidly developed in the last 20 years, overlapping with the period of the Antiproton Decelerator (AD) at CERN. The central subjects are CPT symmetry tests and Weak Equivalence Principle (WEP) tests. Various groundbreaking techniques have been developed and are still in progress such as to cool antiprotons and positrons down to extremely low temperature, to manipulate antihydrogen atoms, to construct extremely high-precision Penning traps, etc. The precisions of the antiproton and proton magnetic moments have improved by six orders of magnitude, and also laser spectroscopy of antihydrogen has been realized and reached a relative precision of 2 × 10−12 during the AD time. Antiprotonic helium laser spectroscopy, which started during the Low Energy Antiproton Ring (LEAR) time, has reached a relative precision of 8 × 10−10. Three collaborations joined the WEP tests inventing various unique approaches. An additional new post-decelerator, Extra Low ENergy Antiproton ring (ELENA), has been constructed and will be ready in 2021, which will provide 10–100 times more cold antiprotons to each experiment. A new era of the cold antimatter physics will emerge soon including the transport of antiprotons to other facilities.  相似文献   

8.
The experimental program of the AEgIS experiment at CERN’s AD complex aims to perform the first measurement of the gravitational interaction of antimatter, initially to a precision of about 1%, to ascertain the veracity of Einstein’s Weak Equivalence Principle for antimatter. As gravity is very much weaker than electromagnetic forces, such an experiment can only be done using neutral antimatter. The antihydrogen atoms also need to be very cold for the effects of gravity to be visible above the noise of thermal motion. This makes the experiment very challenging and has necessitated the introduction of several new techniques into the experimental field of antihydrogen studies, such as pulsed formation of antihydrogen via 3-body recombination with excited state positronium and the subsequent acceleration of the formed antihydrogen using electric gradients (Stark acceleration). The gravity measurement itself will be performed using a classical Moire deflectometer. Here we report on the present state of the experiment and the prospects for the near future.  相似文献   

9.
The storage and handling of atomic antimatter presents special problems because contact with the walls of any material container results in annihilation. Laser cooling, laser trapping and magnetic trapping techniques are therefore especially appealing. Here we review the basic principles of electromagnetic trapping and laser cooling for neutral atoms, and briefly describe a number of already-demonstrated laser and magnetic traps. We discuss limits on the temperatures achievable by laser cooling, as well as some special problems in the laser cooling of hydrogen/antihydrogen. In particular, we present some new results for the case of pulsed cooling. Work of the U.S. Government; not subject to copyright in the United States.  相似文献   

10.
A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms   总被引:1,自引:0,他引:1  
The gravitational acceleration of antimatter has never been measured directly. Antihydrogen atoms, being both stable and neutral, are an ideal system for investigating antimatter gravity. Ultralow temperatures in the 10–100 K range are desirable for practical experiments. It is proposed to cool positive antihydrogen ions using laser-cooled ordinary ions. Ultracold neutral antihydrogen atoms might then be obtained by photodetachment. The gravitational acceleration can readily be determined from the time-of-flight between the photodetachment laser pulse and an annihilation detector.  相似文献   

11.
Possibilities for trapping and cooling antihydrogen atoms for spectroscopy and gravitational measurements are discussed. A measurement of the gravitational force on antihydrogen seems feasible if antihydrogen can be cooled to of order 1 milli-Kelvin. Difficulties in obtaining this low energy are discussed in the hope of stimulating required experimental and theoretical studies.  相似文献   

12.
GBAR     
The GBAR project aims to perform the first test of the Equivalence Principle with antimatter by measuring the free fall of ultra-cold antihydrogen atoms. The objective is to measure the gravitational acceleration to better than a percent in a first stage, with a long term perspective to reach a much higher precision using gravitational quantum states of antihydrogen. The production of ~20 μK atoms proceeds via sympathetic cooling of $\mathrm{\overline{H}^+}$ ions by Be?+? ions. $\mathrm{\overline{H}^+}$ ions are produced via a two-step process, involving the interaction of bursts of 107 slow antiprotons from the AD (or ELENA upgrade) at CERN with a dense positronium cloud. In order to produce enough positronium, it is necessary to realize an intense source of slow positrons, a few 108 per second. This is done with a small electron linear accelerator. A few 1010 positrons are accumulated every cycle in a Penning–Malmberg trap before they are ejected onto a positron-to-positronium converter. The overall scheme of the experiment is described and the status of the installation of the prototype positron source at Saclay is shown. The accumulation scheme of positrons is given, and positronium formation results are presented. The estimated performance and efficiency of the various steps of the experiment are given.  相似文献   

13.
A background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.  相似文献   

14.
The aim of the ASACUSA-CUSP experiment at CERN is to produce a cold, polarised antihydrogen beam and perform a high precision measurement of the ground-state hyperfine transition frequency of the antihydrogen atom and compare it with that of the hydrogen atom using the same spectroscopic beam line. Towards this goal a significant step was successfully accomplished: synthesised antihydrogen atoms have been produced in a CUSP magnetic configuration and detected at the end of our spectrometer beam line in 2012 [1]. During a long shut down at CERN the ASACUSA-CUSP experiment had been renewed by introducing a new double-CUSP magnetic configuration and a new semi-cylindrical tracking detector (AMT) [2], and by improving the transport feature of low energy antiproton beams. The new tracking detector monitors the antihydrogen synthesis during the mixing cycle of antiprotons and positrons. In this work the latest results and improvements of the antihydrogen synthesis will be presented including highlights from the last beam time.  相似文献   

15.
The observation of the production of antihydrogen atoms \overlineH 0\equiv\barpe+, the simplest atomic bound state of antimatter, is presented. A method has been used by the PS210 collaboration at LEAR which assumes that the production of \overlineH0 is predominantly mediated by the e+e--pair creation via the two-photon mechanism in the antiproton--nucleus interaction. Neutral \overlineH0 atoms are indentified by a unique sequence of characteristics. In principle \overlineH0 is well suited for investigations of fundamental CPT violation studies under different forces, however, in our investigations we concentrate on the production of this antimatter object, since so far it had not been observed. The production of eleven antihydrogen atoms is reported including possibly 2± 1 background signals, the observed yield agrees with theoretical predictions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The gravitational force acting on antiparticles has never been directly measured to date. A method for measuring the gravitational effects on antihydrogen by equilibrating the gravitational force with a magnetic gradient is discussed. The systematic and statistical errors inherent to the measurement will be presented. It will be shown that a measurement of gravity at 1% can be realised using ∼ 5 × 105 antihydrogen atoms. The production of antihydrogen atoms in conditions suitable for the measurement is also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
There has never been a direct measurement of the gravitational force on antimatter. This paper describes a possible measurement of this force by measuring the phase shift of neutral antimatter in a transmission-grating interferometer caused by the Earth’s gravitational field. This experiment avoids the severe problem of shielding stray electromagnetic fields necessary for making a gravity measurement with charged particles, and also avoids the need to trap neutral particles. The neutral antimatter for this experiment could be either antihydrogen, positronium, or antineutrons. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus (“cusp trap”) which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.  相似文献   

19.
An antiproton cloud cooled at 4.2 K in a Penning trap can be further cooled by adiabatic reduction of the trap magnetic and electric fields. It will be shown that the temperature can be reduced by two orders of magnitude. This cooling method may be useful to obtain ultra-low energy antiprotons for the measurement of their gravitational properties and the production of ultra-low energy antihydrogen atoms.  相似文献   

20.
We present a theoretical study of the motion of antihydrogen atoms in the Earth??s gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号