首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In this study we describe the preparation of Ga2Se3 semiconductor compound thin films by sol–gel method for different crystal formation temperatures. The films were characterized by X-ray diffraction analyses (XRD), UV–visible spectrometer, and scanning electron microscope (SEM). The XRD spectrum showed that the formation of Ga2Se3 crystals were between 743 and 823 K. The thin film crystals that were formed at 773 K corresponded to the β phase and the preferred crystal structure was monoclinic. The value of band gap from optical absorption spectra for the Ga2Se3 thin films was estimated to be about E g ~ 2.56 eV. The thickness of the one-coat Ga2Se3 thin films, which was measured by a Spectroscopic Ellipsometer, was about ~200 nm. The average grain sizes of scattered particles were within the limits between 200 and 500 nm.  相似文献   

4.
In this study, the role of TiO2 MT-150A loading in the polymeric sol was investigated for the synthesis of immobilized TiO2 nanocomposite films on glass substrate using the MT-150A nanoparticles-modified sol–gel method. The nanocomposite film properties were examined using different material characterization techniques including X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, UV–Vis spectrophotometer, Scotch tape test and pencil hardness test. The hydrophilicity of films during UV/Vis irradiation and storage in a dark place were evaluated by a contact angle analyzer. The MT-150A loading had a significant effect on the amount of crystallite phases in the films. However, increasing the MT-150A loading in the sol resulted in an increase in rutile phase content. In addition, increasing MT-150A loading in the sol yielded films with higher hydrophilicity but a concentration of 10–30 g/L MT-150A in the sol was found as the maximum for obtaining films with good adherence on the glass substrate.  相似文献   

5.
Highly stable TiO2 sols were prepared by adjusting the water-to-titanium molar ratio to ~4 in the process of hydrolysis and condensation of titanium isopropoxide in ethanol with HNO3. Particularly, long-term stable TiO2 sols were prepared without adding any chemical additives. Anatase TiO2 nanocrystallites with sizes of 3–5 nm in diameter were uniformly dispersed in the stable sol. Crystallized TiO2 films were successfully deposited on Si (100) using the stable sol via a dip-coating process with low temperature curing at as low as 100 °C. The synthesized TiO2 sols and films are promising for use in flexible or dye-sensitized solar cells.  相似文献   

6.
Titanium (IV) oxide semiconducting layers were prepared by means of the templated sol–gel method and deposited on conductive ITO substrates. The films were described by a series of techniques involving X-ray diffraction (XRD), Raman spectroscopy, X-ray reflectivity (XRR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and ultraviolet–visible spectroscopy (UV–Vis). The photo-excitation properties of the films were characterized by electrochemical tests and evaluated from the obtained polarization curves. The generated photocurrents were measured in the presence of the hole-scavengers—oxalic acid and formic acid in the electrolyte. It was shown that especially in the case of oxalic acid the developed system can be used as an efficient and simpler concentration sensor. The relationship between values of the generated photocurrent and the layers’ thicknesses was also investigated.  相似文献   

7.
Copper-doped zirconia (1% mol) and zirconia powders were prepared by the sol–gel process, using zirconium n-butoxide and copper nitrate as precursors. The resulting xerogels are nanocrystalline and exhibit different properties from the corresponding microcrystalline materials. The copper nitrate salt was dissolved and co-gelled in situ at the initial stage of the reaction. The properties of the resulting materials were studied by XRD, FTIR and UV-Vis. The as-prepared samples were amorphous and crystallized to the tetragonal zirconia phase at 400 °C. At temperatures higher than 600 °C, the monoclinic phase was also obtained. No evidence of discrete crystalline copper compounds was observed, consistent with good dispersion of the dopant. Several bands were observed by FTIR in the 4400–3000 cm–1 region, which diminishes in intensity and shifted to higher wavenumbers with heating. The bandgap energy (Eg) was strongly modulated by the presence of the dopant and heating temperature, with increasing temperature leading to a corresponding decrease in Eg.  相似文献   

8.
Alumina-based pigments were synthesized by the proteic sol–gel method. In this method, coconut water is employed as polymeric agent instead of the conventional alkoxide precursors. To this study, three common chromophore metallic ions (Mn3+, Co3+, and Cr3+) were chosen in order to verify the method efficiency. Differential thermal analysis (DTA), thermogravimetry (TG), and XRD techniques were used to characterize the synthesis process. The colorimetric characterization of the produced pigments was done according to the CIE-L*a*b* 1976 norm which is recommended by the CIE (International Commission on Illumination). The synthesized pigments presented intense and uniform colors in accordance to the literature results for each chromophore ion. The produced pigments also presented agglomerated with an average grain size of 180 nm when calcined at 800 °C.  相似文献   

9.
High temperature 0, 5, 8 and 12 mol % Ho2O3–ZrO2 insulation coatings were successfully deposited on Ag and AgMg/Bi-2212 superconducting tapes using sol–gel technique for magnet technologies. With this purpose, transparent solutions were prepared from Ho and Zr-based precursor materials and then Ho2O3 effect on thermal, structural and microstructural properties were observed and discussed in the present study. It was found that Ho2O3 additive has a propensity to generate tetragonal ZrO2 and help to stabilize it. It was observed that insulation coatings with a mosaic structure having cracks were fully compatible with Ag/AgMg sheathed Bi-2212 tape substrates because of oxygen permeability, high and low actual temperatures and W&R process in comparison with the conventional insulation process. In addition, surface roughness decreased with increasing Ho2O3 content, thereby decreasing the grain size. Although porosity values vary considerably from one porosity mesurement expression to another, porosities of the insulation coatings can be estimated to be in the range of 3 and 30 vol %.  相似文献   

10.
Lithium intercalation materials are of special interest as cathodes in rechargeable batteries. An uncomplicated sol–gel process has been used for the synthesis of Li–Co phosphates powders and, for the first time, of LiCoPO4 films. The powders were prepared from aqueous solutions, containing Li, Co and phosphate precursors to which acid citric and ethylene glycol was added, during the drying process at 75 °C. The X-ray diffraction patterns of the prepared powders confirmed the presence of LiCoPO4 with an olivine-like structure as main phase. The morphological investigations of the powder showed a platelet-like structure with an average grain size of 0.75 μm. The films of LiCoPO4 were deposited onto ITO glass substrates with the combination of the dip-coating process under the same conditions. Finally, the films were annealed in inert atmosphere at 300 °C. The morphological investigations reveal a smooth and homogeneous surface of the prepared Li–Co phosphate films. The preliminary electrical investigation on the prepared LiCoPO4 films showed lithium ions electrochemical activity in the range 3.0–4.5 V.  相似文献   

11.
The morphological and electrical characterization of transparent nanostructured LiNbO3–SiO2 thin films synthesized by a novel sol–gel route is reported. Films annealed at different temperatures exhibit different size of the nanocrystals, as demonstrated by Atomic Force Microscopy and Glancing Incidence X-ray diffraction. The dc electrical measurements performed on planar devices reveal electrical bistability. A clear relationship between the electrical bistability and the size of LiNbO3 nanocrystals embedded in the matrix is observed.  相似文献   

12.
A series of Pd/Al2O3–ZrO2 materials have been prepared via sol gel method as an attractive route to obtain more homogeneous binary oxides Al2O3–ZrO2. A Zr loading between 2 and 15 wt% was used to investigate the Zr promotion of Pd/Al2O3 materials. The prepared catalysts were calcined at two different temperatures. Very interesting results have been obtained at low zirconium content. A small amount of Zr is seen to be sufficient to stabilize the activity and to obtain good catalytic performances with developed textural properties compared to conventional catalysts used to oxidize methane. The increase of the zirconium loading is seen to decrease the catalytic activity may be due to the development of tetragonal zirconia phase detected by XRD. Similar effect has been observed after heating catalysts at high temperatures. A loss in BET surface area and in metal dispersion has been also observed for zirconium rich catalysts. A contradictory effect on textural and structural properties is seen after their calcination at 700 °C.  相似文献   

13.
We report the independent invention of perovskite ferroelectric nanowires strontium bismuth tantalate (SrBi2Ta2O9, SBT). Electrophoretic sol–gel techniques have been used successfully. The morphology and structures are analyzed via SEM, TEM and XRD. SBT nanowires and nanoparticles filled template revealed 30 and 40 μm long, respectively. SBT are proved to be a single phase of orthorhombic perovskite structure. As it indicated, SBT nanowires has been crystallized at 700 °C. To minimize surface polarity, SBT nanowires oriented preferentially along the growing axis (c axis) by translation and rotation of atomic clusters of SBT.  相似文献   

14.
ε-Fe2O3/SiO2 nanocomposite was prepared by novel solgel method using single precursor for both nanoparticles and matrix. This method allows to prepare the samples free of α-Fe2O3 with 40% of Fe2O3 in SiO2. Nanoparticles of 12 nm diameter were obtained by annealing at 1,000 °C. The samples were characterized by powder X-ray diffraction and transmission electron microscopy. Mössbauer spectroscopy identified ε-Fe2O3 as the only magnetically ordered phase at room temperature. Magnetic measurements revealed progressive necking of hysteresis loops measured at 300 and 2 K. In both cases the intrinsic coercivity reaches only 0.25 T. Measurements up to 14 T shows monotonous decreasing trend of saturated magnetization with increasing temperature.  相似文献   

15.
This work aims to elucidate whether the hypothesis of zero oxygen at the mixture layer when flame takes place is assumable for every kind of material. For that purpose, we investigated the oxygen concentration there by cone calorimeter tests. A modified holder was developed in order to collect oxygen in this mixture layer. In addition, thermogravimetric tests were carried out so as to relate the possible effects of the presence of oxygen in the atmosphere where the pyrolysis process takes place, since the cone calorimeter does not allow to control the oxygen level of the atmosphere during the experiment. The reaction rates and per cent of residue in the cone calorimetric tests were measured and compared with the results from thermogravimetric tests. Six products were analysed which can be classified in three main groups: lignocellulosic, thermoplastic polymers and thermoset polymers. Cone calorimetric results showed that for some of the materials analysed (PET, Nylon and PUR foam) the oxygen level at mixture layer decreased until values close to zero. The comparison of reaction rates between cone calorimetric and thermogravimetric tests revealed the char layer created in cone calorimetric tests over the exposed face for brushed fir, Nylon and PET established an important heat barrier that modifies the thermal behaviour of these materials.  相似文献   

16.
Pure and boron (B) doped iron oxide (Fe2O3) nanostructured thin films were prepared by sol–gel spin coating method. The effects of B (0.1, 0.2, 0.5 and 1 %) content on the crystallinity and morphological properties of Fe2O3 films were investigated by X-ray diffractometer and atomic force microscopy. X-ray diffraction patterns revealed that the Fe2O3 films have a rhombohedral crystalline phase of α-Fe2O3 phase (hematite) with nanostructure and their crystallite size (D) is changed from 27 ± 2 to 45 ± 5 nm with B dopant content. The minimum crystallite size value of 27 ± 2 nm was obtained for 0.2 % B doped Fe2O3 film. Carrying out UV–VIS absorption study for both doped and undoped films at room temperature, it was realized that allowed optical transitions may be direct or indirect transitions. The direct and indirect energy gap values for pure Fe2O3 were obtained to be 2.07 and 1.95 eV, respectively. The optical band gap value of the films was changed with 0.1 % B doping to reach 1.86 eV for direct band gap and 1.66 eV in case of indirect band gap.  相似文献   

17.
ZrO2–SiO2 xerogels have been synthesized through hydrolysis of a mixture of tetrabutoxyzirconium and tetraethoxysilane in a desiccator in a vapor of a 15% aqueous NH3 atmosphere. ZrO2–SiO2–Cu(II) xerogels were synthethized analogously through joint hydrolysis of a mixture of the organometallic precursors and copper(II) chloride. The effect of synthesis conditions on the physical and chemical properties of the resulting material has been studied.  相似文献   

18.
The high efficacy of iron-containing catalysts based on SiO2–Al2O3 systems obtained via sol–gel method in the oxidative destruction of carmoisine azo dye in aqueous solutions is demonstrated. It is found that the stability of the catalysts with respect to the leaching of iron ions into a solution during catalysis grows along with the aluminum content in the composition of aluminosilicate supports. It is concluded that the synthesized catalysts are promising materials for purifying wastewaters contaminated with organic dyes.  相似文献   

19.
Nickle and iron doped TiO2 thin films were prepared on glass substrates by sol–gel dip coating process. Indirect and direct optical energy gaps were calculated with the incorporation of different concentrations of both the ions. Indirect bandgap was found to be a strong function of the dopant concentration, whereas direct energy gap has negligible dependence on the nature of dopant and its concentration. Direct energy gap has always been found to retain a value higher than the indirect energy gap. Variation of observed energy gap properties shows a trend similar to that reported on the basis of numerical calculations or the samples obtained by other techniques. Increase in refractive index and corresponding density of the film sample does not support the change in turn over frequency. The influence of crystalline phase change is also ruled out by XRD investigations. It is concluded that red shift of band edge absorption takes place by incorporation of dopant and sol–gel dip coating technique offers an effective low cost route to the production of these coatings.  相似文献   

20.
Formation of zirconia nanocrystals in the course of thermal treatment of an X-ray amorphous zirconium oxyhydroxide was studied. It was shown that the formation of tetragonal and monoclinic polymorphs of ZrO2 in the temperature range from 500 to 700°C occurs owing to dehydration and crystallization of amorphous hydroxide. An increase of the temperature up to 800°C and higher activates mass transfer processes and, as a result, activates the nanoparticle growth and increases the fraction of the phase based on monoclinic modification of ZrO2 due to mass transfer from the nanoparticles with the non-equilibrium tetragonal structure. Herewith, formed ZrO2 nanocrystals with monoclinic structure have a broad size distribution of crystallites, and the average crystallite size after thermal treatment at 1200°C for 20 min is about 42 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号