首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoelectron images of Ag(-)(H(2)O)(x) (x=1,2) and AgOH(-)(H(2)O)(y) (y=0-4) are reported. The Ag(-)(H(2)O)(1,2) anionic complexes have similar characteristics to the other two coinage metal-water complexes that can be characterized as metal atomic anion solvated by water molecules with the electron mainly localized on the metal. The vibrationally well-resolved photoelectron spectrum allows the adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of AgOH(-) to be determined as 1.18(2) and 1.24(2) eV, respectively. The AgOH(-) anion interacts more strongly with water molecules than the Ag(-) anion. The photoelectron spectra of Ag(-)(H(2)O)(x) and AgOH(-)(H(2)O)(y) show a gradual increase in ADE and VDE with increasing x and y due to the solvent stabilization.  相似文献   

2.
Li S  Zhao Z  Liu Q  Huang L  Wang G  Pan D  Zhang H  He X 《Inorganic chemistry》2011,50(23):11958-11964
Metastable zinc blende CuInSe(2) nanocrystals were synthesized by a hot-injection approach. It was found that the lattice mismatches between zinc blende CuInSe(2) and ZnSe as well as CuInSe(2) and CuInS(2) are only 2.0% and 4.6%, respectively. Thus, alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a zinc blende structure have been successfully synthesized over the entire composition range, and the band gaps of alloys can be tuned in the range from 2.82 to 0.96 eV and 1.43 to 0.98 eV, respectively. These alloyed (ZnSe)(x)(CuInSe(2))(1-x) and CuInSe(x)S(2-x) nanocrystals with a broad tunable band gap have a high potential for photovoltaic and photocatalytic applications.  相似文献   

3.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

4.
The enols R 1 R 2 P(E)(CN)C = CR 3 OH (E = O or S) gave in solutions either neutral metal complexes ML x or M(OH) y L x . The anionic ambidentate ligands are coordinated through E and O atoms in solutions, and O, E, and N atoms in in crystals.  相似文献   

5.
Three inorganic-organic compounds based on [Mo(x)O(y)](n-) chains, [Ag(4)(3-pttz)(2)Mo(3)O(10)] (1) (3-pttz = 5-(3-pyridyl) tetrazolate), [Ag(4)(2-pttz)(2)Mo(4)O(13)] (2) (2-pttz = 5-(2-pyridyl) tetrazolate), and [Ag(4)(pzttz)(2)Mo(4)O(13)] (3) (pzttz = 5-(pyrazinyl) tetrazolate), have been self-assembled, accompanied by in situ formation processes of the 5-substituted tetrazolate ligands under hydrothermal condition. Compound 1 features a 3D framework composed of [Mo(3)O(10)](2-) chains cross-linked by [Ag(4)(3-pttz)(2)](2+) belts. Compounds 2 and 3 reveal the 3D structures based on [Mo(4)O(13)](2-) chains pillared by silver tetrazolate polymeric chains. The three title compounds represent the first three examples that the tetrazolate ligands are introduced into the backbones of the [Mo(x)O(y)](n-) anion chains.  相似文献   

6.
Water-soluble, relatively light-stable, chiral and achiral silver(I) complexes [[Ag(2)(ca)(2)]](n) and [[Ag(2)(ca)(2)(Hca)(2)]](n)(R- and S-Hca =(1R,4S)- and (1S,4R)-4,7,7-trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-1-carboxylic acid, respectively) prepared from the reaction of Ag(2)O with chiral and racemic Hca in 1:2 and 1:4 molar ratios were characterized by elemental analysis, TG/DTA, FTIR, and solution ((1)H, (13)C and (109)Ag) and solid-state ((13)C) NMR spectroscopy. Crystallography revealed that unique 2(1) helical polymer and zigzag structures were formed on self-assembly of the dimeric units in the crystals of [[Ag(2)(S-ca)(2)]](n) and three [[Ag(2)(ca)(2)(Hca)(2)]](n). In the crystal of [[Ag(2)(S-ca)(2)]](n) two 2(1) helices and a loop were observed in the stair-like polymer structure, whereas zigzag and a loop were seen in the crystals of three [[Ag(2)(ca)(2)(Hca)(2)]](n). Carbon NMR spectra in the solid state and in D(2)O indicated that these polymeric structures were loosely bound and fast ligand-exchange reactions took place in aqueous solution. The complexes, [[Ag(2)(ca)(2)]](n) and [[Ag(2)(ca)(2)(Hca)(2)]](n), showed a wide spectrum of effective antimicrobial activity as anticipated for weak silver(i)-O bonding complexes. Similar antimicrobial activity of [[Ag(2)(ca)(2)]](n) and [[Ag(2)(ca)(2)(Hca)(2)]](n) against selected microorganisms suggested that ligand exchangeability played an important role as well as the coordination geometry of the silver(i) ion.  相似文献   

7.
We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology, where the Phi(Delta) value can be controlled by changing the symmetry of pi conjugated systems without heavy elements, appears useful for preparing novel photosensitizers.  相似文献   

8.
Polymeric transition metal chalcogenides have attracted much attention because of their possible unusual properties directly derived from their extended structures. The molecules n-cyanopyridine (n = 2, 3, and 4) and pyridine-3,4-dicarbonitrile are found to function as bidentate or monodentate (only pyridine nitrogen donor atom) ligands in the coordination of silver(I) and copper(I) ions, respectively. The mode of coordination depends on the anion and the crystallization conditions and has been elucidated in all cases by single-crystal X-ray crystallography. We report here the syntheses, structural characterization, and electrical properties of six new polymers, [Ag(2)(2-cyanopyridine)(2)(NO(3))(2)](n)(1), [Ag(4)(3-cyanopyridine)(8)(SiF(6))(2)(H(2)O)(2)](n) (2), [Ag(3-cyanopyridine)(2)(NO(3))](n)(3), [Ag(pyridine-3,4-dicarbonitrile)(2)(NO(3))](n)(4), [Cu(I)(4-cyanopyridine)(2)(SCN)](n)(5), and [Cu(I)(pyridine-3,4-dicarbonitrile)(2)(SCN)](n)(6). Compounds 1 and 2 exhibit novel two-dimensional networks, while 3-6 have one-dimensional chain structures, in which 3 is a single-stranded helix. Room-temperature conductivities of 1, 2, 4, and 6 have been measured and are 3.1 x 10(-)(7), 2.7 x 10(-)(7), 7.4 x 10(-)(6), and 4.3 x 10(-)(5) S.cm(-)(1), respectively. The effect of temperature on the conductivities has been investigated.  相似文献   

9.
The magnetic exchange interactions in the mixed-valence dodecanuclear polyoxovanadate compounds Na(4)[V(IV)(8)V(V)(4)As(III)(8)O(40)(H(2)O)].23H(2)O, Na(4)[V(IV)(8)V(V)(4)As(III)(8)O(40)(D(2)O)].16.5D(2)O, and (NHEt(3))(4)[V(IV)(8)V(V)(4)As(III)(8)O(40)(H(2)O)].H(2)O were investigated by an inelastic neutron scattering (INS) study using cold neutrons. In addition, the synthesis procedures and the single-crystal X-ray structures of these compounds have been investigated together with the temperature dependence of their magnetic susceptibilities. The magnetic properties below 100 K can be described by simply taking into account an antiferromagnetically exchange coupled tetramer, consisting of four vanadium(IV) ions. Up to four magnetic transitions between the cluster S = 0 ground state and excited states could be observed by INS. The transition energies and the relative INS intensities could be modeled on the basis of the following exchange Hamiltonian: H(ex) = -2J(12)(xy)[S(1x)S(2x)+ S(3x)S(4x)+ S(1y)S(2y)+ S(3y)S(4y)] - 2J(12)(z)[(S(1z)S(2z)+ S(3z)S(4z)] - 2J(23)(xy)[(S(2x)S(3x)+ S(1x)S(4x)+ S(2y)S(3y)+ S(1y)S(4y)] - 2J(23)(z)[(S(2z)S(3z)+ S(1z)S(4z)]. The following sets of parameters were derived: for Na(4)[V(12)As(8)O(40)(H(2)O)].23H(2)O, J(12)(xy)() = J(12)(z)= -0.80 meV, J(23)(xy) = J(23)(z) = -0.72 meV; for Na(4)[V(12)As(8)O(40)(D(2)O)].16.5D(2)O, J(12)(xy) = J(12)(z) = J(23)(xy) = J(23)(z = -0.78 meV; for (NHEt(3))(4)[V(12)As(8)O(40)(H(2)O)].H(2)O, J(12)(xy) = -0.80 meV, J(12)(z) = -0.82 meV, J(23)(xy)() = -0.67 meV, J(23)(z) = -0.69 meV. This study of the same [V(12)As(8)]-type cluster in three different crystal environments allows us to draw some conclusions concerning the applicability on INS in the area of nondeuterated molecular spin clusters. In addition, the effects of using nondeuterated samples and different sample container shapes for INS were evaluated.  相似文献   

10.
We demonstrate the synthesis of semiconductor Pb(2-x)Sn(x)S(2) nanocrystals with a cubic rock salt crystal structure in a composition range where this structure is unstable in the bulk. The cubic Pb(2-x)Sn(x)S(2) nanocrystals were prepared using a modified hot injection colloidal synthetic route. The x value is in the range 0.40 < x < 1. Even though these compositions lie in a region of the PbS-SnS phase diagram where no single phase exists, and despite the fact that PbSnS(2) is a distorted orthorhombic phase, the Pb(2-x)Sn(x)S(2) nanocrystals are single phase solid solutions with cubic NaCl-type structure. Experimental evidence for this derives from powder X-ray diffraction (PXRD), electron diffraction, and pair distribution function (PDF) analysis. Elemental compositions determined using scanning transmission electron microscopy/energy dispersive spectroscopy (STEM/EDS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and electron energy loss spectroscopy (EELS) reveal a composition close to the nominal ones. The band gaps of the Pb(2-x)Sn(x)S(2) nanocrystals (0.52-0.57 eV) are blue-shifted by quantum confinement relative to that of the hypothetical cubic PbSnS(2) phase which density functional theory (DFT) calculations show to be much narrower (0.2 eV) than in the case of orthorhombic PbSnS(2) (1.1 eV). The Pb(2-x)Sn(x)S(2) nanocrystals exhibit a well-defined band gap in the near-IR region and are stable up to ~300 °C above which they phase separate into cubic PbS and orthorhombic α-SnS.  相似文献   

11.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

12.
唐丽永  王国富 《结构化学》2010,29(1):109-113
Thermal properties of pure KY(WO4)2 and K(Y1-xYbx)(WO4)2(x=0.098,0.196,0.294) crystals were investigated.The specific heat and thermal diffusivity of crystals were calculated at a range of 50~300 ℃.The calculated result shows that the specific heat and thermal diffusivity of K(Y1-xYbx)(WO4)2(x=0.098,0.196,0.294) crystals were slightly affected by the Yb3+ concentration.The thermal expansion coefficient of K(Y0.804Yb0.196)(WO4)2 crystals along x,y and z axes were determined to be 13.51,4.474 and 16.60×10-6 K-1,respectively.These results suggest the K(Y1-xYbx)(WO4)2(x=0.098,0.196,0.294) crystal as a laser crystal of low-middle power.  相似文献   

13.
Highly monodisperse submicrometer CdS colloidal spheres (CSCS) with a controllable and tunable size (between 80 and 500 nm) have been synthesized through a facile solvothermal technique. Owing to the controllability of the reaction process, the growth mechanism of the colloidal spheres has been elucidated in detail. The whole growth process can be summarized as homogenous and slow nucleation of nanocrystals, formation of "cores" through 3D-oriented attachment of nanocrystals, and further surface-induced growth to monodisperse colloidal spheres through in situ formation and random attachment of additional nanocrystals. It has been demonstrated that the obtained CSCS colloidal particles are able to be assembled into films which show characteristic stop band gaps of photonic crystals. By using the CSCS as a template, Ag2S, Bi2S3, Cu2S, HgS, and Sb2S3 colloidal spheres, which are difficult to obtain directly, have also been prepared successfully through ion exchange.  相似文献   

14.
The ground-state properties of the pentameric Co(II) cluster [Co(3)W(D(2)O)(2)(CoW(9)O(34))(2)](12-) were investigated by combining magnetic susceptibility and low-temperature magnetization measurements with a detailed inelastic neutron scattering (INS) study on a fully deuterated polycrystalline sample of Na(12)[Co(3)W(D(2)O)(2)(CoW(9)O(34))(2)].46D(2)O. The encapsulated magnetic Co(5) unit consists of three octahedral and two tetrahedral oxo-coordinated Co(II) ions. Thus, two different types of exchange interactions are present within this cluster: a ferromagnetic interaction between the octahedral Co(II) ions and an antiferromagnetic interaction between the octahedral and the tetrahedral Co(II) ions. As a result of the single-ion anisotropy of the octahedral Co(II) ions, the appropriate exchange Hamiltonian to describe the ground-state properties of the Co(5) spin cluster is anisotropic and is expressed as H = -2 summation operator(i= x,y,z)J(1)(i)[S(1)(i)S(2)(i) + S(2)(i)S(3)(i)] + J(2)(i)[S(1)(i)S(5)(i) + S(2)(i)S(5)(i) + S(2)(i)S(6)(i) + S(3)(i)S(6)(i)], where J(1)(i) are the components of the exchange interaction between the octahedral Co(II) ions and J(2)(i) are the components of the exchange interaction between the octahedral and tetrahedral Co(II) ions (see Figure 1d). The study of the exchange interactions in the two structurally related polyoxoanions [Co(4)(H(2)O)(2)(PW(9)O(34))(2)](10)(-) and [Co(3)W(H(2)O)(2)(ZnW(9)O(34))(2)](12)(-) allowed an independent determination of the ferromagnetic exchange parameters J(1)(x) = 0.70 meV, J(1)(y) = 0.43 meV, and J(1)(z) = 1.51 meV (set a) and J(1)(x) = 1.16 meV, J(1)(y) = 1.16 meV and J(1)(z) = 1.73 meV (set b), respectively. Our analysis proved to be much more sensitive to the size and anisotropy of the antiferromagnetic exchange interaction J(2). We demonstrate that this exchange interaction exhibits a rhombic anisotropy with exchange parameters J(2)(x) = -1.24 meV, J(2)(y) = -0.53 meV, and J(2)(z) = -1.44 meV (set a) or J(1)(x) = -1.19 meV, J(1)(y) = -0.53 meV, and J(1)(z) = -1.44 meV (set b). The two parameter sets reproduce in a satisfactory manner the susceptibility, magnetization, and INS properties of the title compound.  相似文献   

15.
Layered double hydroxide Cd(1)(-)(x)()Al(x)()(OH)(2)(DS)(x)().3.0H(2)O (CdAlDS) and a related hydroxide salt compound Cd(2)(OH)(3)(DS).2.5H(2)O (CdDS), where DS stands for dodecyl sulfate sandwiched between two adjacent inorganic layers, have been synthesized and used as precursors for CdS nanoparticle growth. Through a gas/solid reaction, CdS nanocrystals implanted in the layer matrixes of the layered double hydroxides are grown, and the sizes of the nanocrystals vary in the range of 3-6 nm in diameter. The presence of trivalent Al cations in the layered double hydroxide can be taken advantage of to control the size of the CdS nanocrystals, and it also helps to prevent the formed nanocrystals from extraction from the solid matrixes. The nano-CdS implanted composite exhibits high photocatalytic activity for degradation of the nonbiodegradable rhodamine B under both UV and visible irradiations.  相似文献   

16.
The dimers [Cu(2)(dppm)(2)(CN-t-Bu)(3)](BF(4))(2) and [Ag(2)(dppm)(2)(CN-t-Bu)(2)](X)(2) (X(-) = BF(4)(-), ClO(4)(-)) and the coordination polymers [[M(diphos)(CN-t-Bu)(2)]BF(4)](n) (M = Cu, Ag; diphos = bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)pentane (dpppen), bis(diphenylphosphino)hexane (dpph)), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), and [[Ag(dpppen)(CN-t-Bu)]BF(4)](n) have been synthesized and fully characterized as model materials for the mixed bridging ligand polymers which exhibit the general formula [[M(diphos)(dmb)]BF(4)](n) (M = Cu, Ag; dmb = 1,8-diisocyano-p-menthane) and [[Ag(dppm)(dmb)]ClO(4)](n). The identity of four polymers ([[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) (x = 1, 2), [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n), [[Ag(dppm)(dmb)]ClO(4)](n)) and the two dimers has been confirmed by X-ray crystallography. The structure of [[Ag(dppm)(dmb)]ClO(4)](n) exhibits an unprecedented 1-D chain of the type "[Ag(dmb)(2)Ag(dppm)(2)(2+)](n)", where d(Ag(.)Ag) values between tetrahedral Ag atoms are 4.028(1) and 9.609(1) A for the dppm and dmb bridged units, respectively. The [[Ag(dppb)(CN-t-Bu)(x)]BF(4)](n) polymers (x = 1, 2) form zigzag chains in which the Ag atoms are tri- and tetracoordinated, respectively. The [[Ag(2)(dppb)(3)(CN-t-Bu)(2)](BF(4))(2)](n) polymer, which is produced from the rearrangement of [[Ag(dppb)(CN-t-Bu)(2)]BF(4)](n), forms a 2-D structure described as a "honeycomb" pattern, where large [Ag(dppb)(+)](6) macrocycles each hosting two counterions and two acetonitrile guest molecules are observed. Properties such as glass transition temperature, morphology, thermal decomposition, and luminescence in the solid state at 293 K are reported. The luminescence bands exhibit maxima between 475 and 500 nm with emission lifetimes ranging between 6 and 55 micros. These emissions are assigned to a metal-to-ligand charge transfer (MLCT) of the type M(I) --> pi(NC)/pi(PPh(2)).  相似文献   

17.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

18.
The magnetic exchange interactions in a C0(3)(11) moiety encapsulated in Na(17) [(NaOH(2))Co(3)(H(2)O)(P(2)W(15)O(56))(2)] (NaCo(3)) were studied by a combination of magnetic measurements (magnetic susceptibility and low-temperature magnetization), with a detailed Inelastic Neutron Scattering (INS) investigation. The novel structure of the salt was determined by X-ray crystallography. The ferromagnetic Co(3)O(14) triangular cluster core consists of three octahedrally oxo-coordinated Co(II) ions sharing edges. According to the single-ion anisotropy and spin-orbit coupling usually assumed for octahedral Co(II) ions, the appropiate exchange Hamiltonian to describe the ground-state properties of the isosceles triangular Co(3) spin cluster is anisotropic and is expressed as H = - 2sigma(alpha)(=)(x,y,z)(J(alpha)(12)S(1alpha)S(2alpha) + J(alpha)(23)S(2alpha)S(3alpha) + J(alpha)(13)S(1alpha)S(3alpha)), where J(alpha) are the components of the exchange interactions between the Co(II) ions. To reproduce the INS data, nonparallel anisotropic exchange tensors needed to be introduced, which were directly connected to the molecular symmetry of the complex. The following range of parameters (value +/- 0.5 cm(-1)) was found to reproduce all experimental information while taking magnetostructural relations into account: J(x)(12) = J(y)(13) = 8.6 cm(-1); J(y)(12) = J(x)(13) = 1.4 cm(-1); J(z)(12) = J(z)(13) = 10.0 cm(-1); J(x)(23) = J(y)(23) = 6.5 cm(-1) and = 3.4 cm(-1).  相似文献   

19.
We demonstrate that Ag(2)S nanocrystals are the bifunctional mediator for controllable growth of semiconductor heterostructures including more complicated multisegments heterostructures in solution-phase, which is a new type of nanomediator and quite different from the metal nanoparticle catalyst. The intrinsic high Ag(+) ion mobility makes Ag(2)S nanocrystals not only exhibit excellent catalytic function for growth of metal sulfide heterostructures but also act as a source-host for growth of ternary semiconductor heterostructures, for example, Ag(2)S-AgInS(2). The semiconductors grow epitaxially from or inward in Ag(2)S nanocrystals forming single-crystalline heterostructures. Moreover, the method developed here also can construct multisegments heterostructures, for example, Ag(2)S-CdS-ZnS, AgInS(2)-Ag(2)S-AgInS(2). The interfacial structure is still stable even if the lattice mismatch is quite large, which is a unique feature of this method.  相似文献   

20.
By a simple and facile wet-chemistry technique without any surfactant, various shapes of Ag(2)S crystals--including leaflike pentagonal nanoplates, crinkly nanoscrolls, hexagonal prismlike microtubes, and microrods--were fabricated in situ on a large-area silver-foil surface separately. Detailed experiments revealed that the Ag(2)S nanoplates were formed just by immersing the silver foil in a sulfur/ethanol solution at room temperature and atmospheric pressure, and they subsequently rolled into nanoscrolls and further grew into microtubes and microrods under solvothermal conditions. Inspired by the natural curling of a piece of foliage, we proposed a surfactant-free rolling mechanism to interpret the observed morphological evolution from lamellar to tubular structures. Based on these simple, practical, and green chemical synthetic routes, we can easily synthesize lamellar, scrolled, tubular, and clubbed Ag(2)S crystals by simply adjusting the reaction temperature, pressure, and time. It is very interesting to note that the current rolling process is quite different from the previous reported rolling mechanism that highly depends on the surfactants; we revealed that the lamellar Ag(2)S could be rolled into tubular structures without using any surfactant or other chemical additives, just like the natural rolling process of a piece of foliage. Therefore, this morphology-controlled synthetic route of Ag(2)S crystals may provide new insight into the synthesis of metal sulfide semiconducting micro-/nanocrystals with desired morphologies for further industrial applications. The optical properties of the pentagonal Ag(2)S nanoplates/film were also investigated by UV/Vis and photoluminescence (PL) techniques, which showed large blue-shift of the corresponding UV/Vis and PL spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号