首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of high internal phase emulsion polymers (polyHIPEs) for CEC applications has remained relatively unexplored. A few reports exist in the literature for the preparation of similar structures. In this study, polyHIPEs having high porosity, and interconnected open-cell structure, were introduced and evaluated as stationary phase for CEC. The polyHIPE monolithic columns were prepared by the in situ polymerization of isodecylacrylate (IDA) and divinylbenzene (DVB) in the continuous phase of a high internal phase emulsion (HIPE). Due to its well-defined polyHIPE structure with interconnected micron size spherical voids, the columns synthesized with different initiator concentrations were successfully used for the separation of alkylbenzenes. Furthermore, the columns indicated a strong electroosmotic flow (EOF) without any additional EOF generating monomer probably due to the presence of ionizable sulfate groups coming from the water-soluble initiator used in the preparation of polyHIPE matrix. The best chromatographic performance in the separation of alkylbenzenes was achieved by using 70% ACN in the mobile phase with high column efficiency (up to 200 000 plates/m).  相似文献   

2.
An adamantyl (ADM)-functionalized monolithic stationary phase was newly synthesized by a single-step copolymerization of 1-adamantyl-(α-trifluoromethyl) acrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid in order to prevent the peak tailing of basic solutes in capillary electrochromatography and was compared with butyl methacrylate (BMA)-based one. The ADM structure shields the negatively charged groups on the surface of monolith from basic solutes, resulting in better peak shapes than BMA-based monolithic stationary phase. As the monomers ratio decreased, the monolithic column had lower retention and higher column efficiency which was likely due to lower phase ratio and smaller globule size of monolith, respectively. The ADM-functionalized monolithic columns exhibited a good repeatability and reproducibility of column preparation with relative standard deviation values below 9% in the studied chromatographic parameters.  相似文献   

3.
Pressurized flow electrochromatography (PEC) is a hybrid of capillary LC and capillary electroendosmotic chromatography (CEC). Both a pressure gradient and an electric field are applied across a packed capillary. The feasability of a simple, easy to handle PEC instrumentation is demonstrated. Home made capillary columns with four different silica-based reversed phase packings have been operated under PEC conditions separating non ionic and ionic low molecular weight analytes. The capillary columns have been characterized with respect to their separation efficiency and selectivity and the results have been compared to those obtained with the purely pressure driven system. An electrochromatographic capacity factor is discussed.Dedicated to Professor Dr. Dr. h.c. mult. J.F.K. Huber on the occasion of his 70th birthday  相似文献   

4.
周孙英  陈继涢  谭静静  林旭聪  谢增鸿 《色谱》2015,33(12):1307-1313
以十八碳醇甲基丙烯酸酯为单体、乙二醇二甲基丙烯酸酯为交联剂,采用原位聚合法合成了一种新型毛细管开管柱固定相,优化了毛细管开管柱的制备参数。柱内表面的电镜图像显示其具有多孔皱褶、质地均匀的结构特征。将其应用于甲苯、乙苯、丙苯、丁苯、戊苯和己苯的分离试验中,6种化合物达到了完全分离,出峰顺序与它们的疏水性一致,表明该柱有明显的疏水色谱作用。在10 mmol/L磷酸盐(pH 8.5,含50%(v/v)乙腈)流动相、16 kV电压下,该开管柱成功地分离了4种抗癫痫类药物,柱效范围为35300~49800 塔板/m,与空柱管相比分离效果明显提高。结果表明通过本实验的原位聚合法可制备具有反相色谱作用的有机基质碳十八开管毛细管电色谱柱。  相似文献   

5.
Wistuba D  Schurig V 《Electrophoresis》2000,21(15):3152-3159
A chiral monolithic stationary phase was prepared by packing a capillary with bare porous silica and sintering the silica bed at high temperature. The resulting silica monolith was polymer-coated with Chirasil-Dex, a permethylated beta-cyclodextrin covalently linked via an octamethylene spacer to dimethylpolysiloxane. Subsequently, Chirasil-Dex was thermally immobilized on the silica support and a chiral monolith of very high stability (30 kV, more than 400 bar pressure) was obtained. The enantiomer separation of various chiral compounds by monolithic (rod) capillary electrochromatography (rod-CEC) was feasible. This method was compared with capillary liquid chromatography (LC) in a single-column mode using unified equipment. About two to three times higher efficiency was found in the rod-CEC mode as compared to rod-LC. The influence of pressure-driven flow support on efficiency, resolution, elution time and baseline stability was investigated. The amount and nature of organic modifier strongly influences efficiency and resolution.  相似文献   

6.
A neutral, nonpolar monolithic capillary column was evaluated as a hydrophobic stationary phase in pressurized CEC system for neutral, acidic and basic solutes. The monolith was prepared by in situ copolymerization of octadecyl methacrylate and ethylene dimethacrylate in a binary porogenic solvent consisting of cyclohexanol/1,4‐butanediol. EOF in this hydrophobic monolithic column was poor; even the pH value of the mobile phase was high. Because of the absence of fixed charges, the monolithic capillary column was free of electrostatic interactions with charged solutes. Separations of neutral solutes were based on the hydrophobic mechanism with the pressure as the driving force. The acidic and basic solutes were separated under pressurized CEC mode with the pressure and electrophoretic mobility as the driving force. The separation selectivity of charged solutes were based on their differences in electrophoretic mobility and hydrophobic interaction with the stationary phase, and no obvious peak tailing for basic analytes was observed. Effects of the mobile phase compositions on the retention of acidic compounds were also investigated. Under optimized conditions, high plate counts reaching 82 000 plates/m for neutral compounds, 134 000 plates/m for acid compounds and 150 000 plates/m for basic compounds were readily obtained.  相似文献   

7.
A carboxy precursor monolithic column, namely poly(carboxy ethyl acrylate-co-ethylene glycol dimethacrylate) was first produced in a 100 μm i.d. fused-silica capillary and subsequently surface bonded with n-octadecyl (C18) ligands by a post-polymerization functionalization process with octadecylamine in the presence of N,N´-dicyclohexylcarbodiimide. The bonding of octadecyl ligands was achieved via an amide linkage between the carboxy functions of the precursor monolith and the amino group of the octadecylamine compound. The resulting C18 monolith exhibited a very low electroosmotic flow (EOF), a fact that required the incorporation of small amounts of 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the polymerization solution to produce a precursor monolith with fixed negative charges of sulfonate groups. This may indicate that the conjugation of the carboxy functions with octadecylamine occurred to a large extent so that the amount of residual carboxy functions was sparsely dispersed and not enough to produce a desirable EOF. The EOF velocity of the C18 column having fixed negative charges provided by the incorporated AMPS increased with increasing ACN content of the mobile phase signaling an increased binding of mobile phase ions to the polar amide linkages near the monolithic surface, and a decreased viscosity of the mobile phase, both of which would result in increased EOF velocity. The C18 monolithic column constituted a novel nonpolar sorbent for reversed-phase capillary electrochromatography for nonpolar solutes, e.g., alkylbenzenes, alkylphenyl ketones, and polyaromatic hydrocarbons, and slightly polar compounds including phenol and chlorophenols. The C18 monolithic column exhibited relatively high selectivity toward chlorophenols differing by one chloro substituent.  相似文献   

8.
In this paper, a molecularly imprinted polymer (MIP) coating grafted to a trimethylolpropane trimethacrylate (TRIM) core material for CEC was reported. The core monolith was prepared with a solution of 20% (w/w) TRIM in a mixture of porogen and a polymerization precursor, which can generate a stable electroosmotic flow due to the formation of ionizable groups after postpolymerization hydrolization. Graft polymerization took place on the resultant TRIM monolith with a mixture of template, methacrylic acid, and ethylene glycol dimethacrylate. Strong recognition ability (selectivity factor was 5.83) for S‐amlodipine and resolution of enatiomers separation (up to 7.99) were obtained on the resulting grafted imprinted monolith in CEC mode. The influence of CEC conditions on chiral separation, including the composition of mobile phase, pH value, and the operating voltages was studied. These results suggest that the method of grafted polymerization reported here allows a rapid development of MIP monolith once core materials with desired properties are available, and is a good alternative to prepare CEC‐based monolithic MIPs.  相似文献   

9.
10.
Shi ZG  Feng YQ  Xu L  Zhang M  Da SL 《Talanta》2004,63(3):593-598
Silica monoliths were fabricated inside fused-silica capillaries. Then the monolithic columns were coated with membrane-like zirconia. The zirconia-coated silica monoliths exhibited different EOF behavior comparing with that of bare silica monoliths. The magnitude and direction could be manipulated by changing the running buffers. Due to the amphoteric characteristic of zirconia, the silica monoliths with zirconia surface facilitate the separation of basic compounds. Aromatic amines and alkaloids were separated without obvious peak tailing. The zirconia surface was easily modified with octadecylphosphonic acid for the separation of neutral compounds. Column efficiency as high as 90,000 and 80,000 m−1 was obtained for beberine and naphthalene, respectively. Furthermore, the zirconia coating increased the stability of the monolithic columns. Even after being exposed to severe condition, there was no apparently efficiency decrease for the test samples.  相似文献   

11.
Tian Y  Feng R  Liao L  Liu H  Chen H  Zeng Z 《Electrophoresis》2008,29(15):3153-3159
An ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was introduced as dynamic coating of a silica monolithic column for capillary electrochromatography of phenols and nucleoside monophosphates. The run-to-run and column-to-column repeatability of migration time for six phenols were satisfactory on this column with relative standard deviation values less than 0.90 and 4.31%, respectively. Anodic electroosmotic flow (EOF) was observed, which increased with the increase of [BMIM][BF4] concentration within 120 mM and when [BMIM][BF4] concentration was above 120 mM, EOF leveled off due to the saturation of [BMIM][BF4] on the monolith. Efficient separation of phenols and nucleoside monophosphates on this dynamically coated monolithic column was obtained, compared with a dynamically coated fused-silica column and unmodified silica monolithic column. The retention behavior of uncharged phenols is mainly manipulated by hydrophobic interactions due to the presence of butyl groups, and that of nucleoside monophosphates is governed by the electrostatic attraction mechanism based on the interaction between positively charged [BMIM][BF4] moieties and negatively charged phosphate groups. In addition, silica matrix also contributes to the separation resolution.  相似文献   

12.
Huang G  Lian Q  Zeng W  Xie Z 《Electrophoresis》2008,29(18):3896-3904
A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.  相似文献   

13.
The separation of basic solutes at low pH by capillary electrochromatography (CEC) has been investigated. The feasibility of separation of basic solutes by CEC was demonstrated. Influence of operational parameters, solvent composition, pH, temperature on retention and selectivity of the separation of a mixture of basic, neutral and acidic drug standards has been investigated. The observed elution behavior has been modeled to account for both chromatographic retention and differential electrophoretic mobility of the solutes. This model was verified experimentally. It is demonstrated in this work that the elution window of solutes in reversed-phase CEC is expanded to range from -1 to infinity.  相似文献   

14.
《先进技术聚合物》2018,29(7):2110-2120
A reactive monolith based on the polymerization of 3‐chloro‐2‐hydroxypropyl methacrylate, (HPMA‐Cl), with a crosslinking agent, ethylene glycol dimethacrylate (EDMA), was synthesized and post‐functionalized with a macromolecular ligand polyethyleneimine. Monolithic columns with controlled permeability and pore structure were prepared by free radical polymerization in the presence of a binary porogenic mixture of isopropanol and decanol. The presence of chloropropyl functionality in the pristine monolith allowed the synthesis of a post‐fuctionalized monolith carrying cationic groups that was used to control the magnitude of electroosmotic flow (EOF) in electrochromatographic separation. In the synthesis of pristine monoliths, the feed concentration of functional monomer (ie, HPMA‐Cl) was changed between 30 and 60 v/v % for obtaining cationic monoliths providing satisfactory electrochromatographic separation. The best electrochromatographic performance was obtained with the polyethyleneimine functionalized monolith prepared by using the pristine monolith obtained by 60% (v/v) monomer concentration. This monolith was used in reversed phase and hydrophilic interaction capillary electrochromatography modes for the separation of alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, and nucleosides, using mobile phases with low acetonitrile (ACN) contents ranging between 20% and 35% (v/v). This ACN range was remarkably lower than the content of ACN used on the hydrophilic polymethacrylate‐based monoliths reported previously (ie, >90%). The plate heights up to 5.3 μm were obtained for the separation of nucleosides with the environmental friendly mobile phases whose ACN contents were also remarkably lower than that of similar polymethacrylate‐based monoliths.  相似文献   

15.
A new polystyrene-based monolithic stationary phase, which was prepared by single step in situ copolymerization of styrene, divinylbenzene and vinylbenzenesulfonic acid (VBSA), was developed as a separation column for capillary electrochromatography, in which VBSA was employed as the charge-bearing monomer. Polymerization time of the polystyrene-based monolith had slightly influenced the separation time of the tested analytes, but it effectively altered their separation resolutions. Furthermore, baseline separation for a wider range of acetonitrile levels of mobile phase was achieved when a monolithic column prepared by a longer polymerization time was used. This novel polystyrene-based monolithic column provided an adequate electroosmotic flow either in basic or acidic mobile phase when VBSA level was maintained at 2.6% (w/w). Finally, this proposed polystyrene-based column allowed seven tested analytes to achieve a reproducible baseline separation within 2.2 min with theoretical plate numbers higher than 164 000 plates/m.  相似文献   

16.
Chen JL 《Electrophoresis》2006,27(4):729-735
A synthetic coppermesogenic polymer is prepared and then covalently bonded to the siloxane-based deactivated column as the stationary phases of open-tubular CEC with essentially high phase ratio. The EOF generated from the modified phase is surveyed through conventional aqueous buffers and hydroorganic mobile phases. Zeta potentials, which are computed from the EOF data and the ratio of dielectric constant to viscosity, are plotted as a function of pH, ionic molarity, and compositional range. These plots responsible for the electroosmotic characteristic of the bonded phases are found to be like those of bare fused-silica or deactivated columns through decreasing or increasing the ACN content in the mobile phase, respectively. This two-phase characteristic is basically derived from the polymeric configuration with carboxylato ligands attached onto the polysiloxane backbone. Phthalates and amino acids are suitable probes to examine the two phenomena, more-polar and less-polar mediums, respectively, and to judge whether the chromatographic retention is the major source of separation mechanism. With the mixing modes of Lewis acid-base interaction, dispersive force, and shape discrimination, the chromatographic partition adequately accomplishes the uneasily resolved separations by only CZE mode, although the electrophoretic migration is truly somewhat involved.  相似文献   

17.
Tian Y  Yang F  Yang X  Fu E  Xu Y  Zeng Z 《Electrophoresis》2008,29(11):2293-2300
1,4,10,13,16-Pentaazatricycloheneicosane-9,17-dione (macrocyclic polyamine)-modified polymer-based monolithic column for CEC was prepared by ring opening reaction of epoxide groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolith with macrocyclic polyamine. Conditions such as reaction time and concentration of macrocyclic polyamine for the modification reaction were optimized to generate substantial EOF and enough chromatographic interactions. Anodic EOF was observed in the pH range of 2.0-8.0 studied due to the protonation of macrcyclic polyamine at the surface of the monolith. Morphology of the monolithic column was examined by SEM and the incorporation of macrocyclic polyamine to the poly(GMA-co-EDMA) monolith was characterized by infrared (IR) spectra. Successful separation of inorganic anions, isomeric benzenediols, and benzoic acid derivatives on the monolithic column was achieved for CEC. In addition to hydrophobic interaction, hydrogen bonding and electrostatic interaction played a significant role in the separation process.  相似文献   

18.
The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.  相似文献   

19.
The analysis of basic compounds by capillary electrochromatography (CEC) on silica-based materials using conventional HPLC stationary phases has failed to address the problem of severe peak tailing and non-reproducible chromatography. Several new generation stationary phases were evaluated using aqueous and non-aqueous mobile phases. The best results were obtained in the aqueous mode using Waters Symmetry Shield RP-8, a material in which the residual silanol groups were shielded by an octylcarbamate function. For comparison, experiments were carried out using unmodified silica.  相似文献   

20.
A novel precursor monolithic capillary column referred to as “hydroxy monolith” or OHM was prepared by the in situ copolymerization of hydroxyethylmethacrylate (HEMA) with pentaerythritol triacrylate (PETA) yielding the neutral poly(HEMA‐co‐PETA) monolith. The neutral precursor OHM capillary thus obtained was subjected to postpolymerization modifications of the hydroxyl functional groups present on its surface with 1,2‐epoxyalkanes catalyzed by boron trifluoride (BF3) ultimately providing Epoxy OHM C‐m capillary column at varying alkyl chain lengths where m = 8, 12, 14, and 16 for RP‐CEC. Also, the same precursor OHM was grafted with octadecyl isocyanate yielding Isocyanato OHM C‐18 column to provide an insight into the effect of the nature of the linkage to the surface hydroxyl groups of the OHM precursor. While the epoxide reaction leaves on the surface of the OHM precursor hydroxy‐ether linkages, the isocyanato reaction leaves carbamate linkages on the same surface of the OHM precursor. This study revealed that changing the alkyl chain length resulted in changing the column phase ratio (?) and also the solute distribution constant (K). While increasing the surface alkyl chain length increased steeply the solute hydrophobic selectivity, i.e. methylene group selectivity, the nature of the ligand linkage produced different retention for the same solutes and affected the selectivity of slightly polar solutes. The various monoliths proved very useful for RP‐CEC of different small solutes at varying polarity over a wide range of mobile phase composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号