首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CdS quantum dots (QDs) have been prepared and modified with chitosan. Based on the quenching of fluorescence signals of the functionalized CdS QDs at 531 nm wavelength and enhancement of signals the 400–700 nm wavelength range by Cu2+ at pH 4.2, a simple, rapid and specific method for Cu2+ determination is presented. Under optimum conditions, the relative fluorescence intensity of CdS QDs is linearly proportional to copper concentration from 8.0 nmol L?1 to 3.0 μmol L?1 with a detection limit of 1.2 nmol L?1. The mechanism can be explained in terms of strong binding of Cu2+ onto the surface of CdS, resulting in a chemical displacement of Cd2+ ions and the formation of CuS on the surface of the QDs.  相似文献   

2.
The static and time-resolved photoluminescence properties of polystyrene-b-poly(acrylic acid) (PS-b-PAA)-stabilized cadmium sulfide quantum dots (CdS QDs) have been characterized for the first time, demonstrating tunable emission spectra and quantum yields via different chemical treatments of the PAA layer. Samples with the PAA layer in its cadmium carboxylate form showed more-intense band-edge emission and relatively high quantum yields compared with samples in which the PAA layer was in its acid form. This activation effect is explained in terms of passivation of trap sites on the QD surface by specific interactions between the QD and the cadmium-neutralized PAA layer. Lifetimes of band-edge and trap state emission for the various samples ranged from 40 to 61 ns and 244 to 360 ns, respectively. Impressive long-term stability was also shown for a sample of cadmium-neutralized PS-b-PAA-stabilized QDs dispersed in toluene, which maintained 90% of its photoluminescence over 57 days aging under ambient conditions. It is also shown that Cd2+ activation of photoluminescence does not occur when Mg2+ ions are added to similar QD solutions, indicating potential of these block copolymer-stabilized QDs as Cd2+-selective sensors. Irrespective of chemical treatment of the PAA layer, the external PS brush layer effectively stabilized all samples in various organic solvents, resulting in clear CdS colloids with no observed precipitation over several months. Dynamic light scattering and gel permeation chromatography revealed differences in the aggregation numbers and hydrodynamic radii of colloidal QDs for different treatments of the PAA layer, attributed to the lower solubility of the poly(cadmium acrylate) blocks compared to the PAA blocks in the acid form. Finally, it was demonstrated that the PS-b-PAA-stabilized QDs could be well dispersed in PS homopolymer, producing optically transparent photoluminescent films which retained the emission features of the colloidal QDs. Stable and surface-tunable optical properties via the PAA layer and polymer solubility and processability via the PS layer make these PS-b-PAA-stabilized CdS QDs exciting "building blocks" for the bottom-up assembly of functional hierarchical materials for photonics, sensors, and bio-labeling applications.  相似文献   

3.
4.
Yu  Ningxiang  Peng  Hailong  Xiong  Hua  Wu  Xiaqing  Wang  Xiaoyan  Li  Yanbin  Chen  Lingxin 《Mikrochimica acta》2015,182(13):2139-2146

A fluorescent probe for the sensitive and selective determination of sulfide ions is presented. It is based on the use of graphene quantum dots (GQDs) which emit strong and stable blue fluorescence even at high ionic strength. Copper(II) ions cause aggregation of the GQDs and thereby quench fluorescence. The GQDs-Cu(II) aggregates can be dissociated by adding sulfide ions, and this results in fluorescence turn on. The change of fluorescence intensity is proportional to the concentration of sulfide ions. Under optimal conditions, the increase in fluorescence intensity on addition of sulfide ions is linearly related (r 2 = 0.9943) to the concentration of sulfide ions in the range from 0.20 to 20 μM, and the limit of detection is 0.10 μM (at 3 σ/s). The fluorescent probe is highly selective for sulfide ions over some potentially interfering ions. The method was successfully applied to the determination of sulfide ions in real water samples and gave recoveries between 103.0 and 113.0 %.

Graphene quantum dots (GQDs) emit strong blue fluorescence which, however, is quenched by copper(II) ions due to the formation of GQDs-Cu(II) aggregates. Fluorescence is recovered by sulfide ions due to the dissociation of GQDs-Cu(II) aggregates.

  相似文献   

5.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520 nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33 μM with a limit of detection (LOD) of 0.07 μM.  相似文献   

6.
Lai S  Chang X  Mao J  Zhai Y  Lian N  Zheng H 《Annali di chimica》2007,97(1-2):109-121
CdS quantum dots (QDs) modified with bismuthiol II potassium salt is prepared in one step. Based on the characteristic fluorescence enhancement of CdS QDs at 480 nm by silver ions, simultaneously, a red shift of fluorescence emission bands of CdS QDs from 460 to 480 nm is observed. A simple, rapid, sensitive and specific detection method for silver ion is proposed. Under optimum conditions, the fluorescence intensity of CdS QDs was linearly proportional to silver ion concentration from 0.01 to 5.0 micromol L(-1) with a detection limit of 1.6 nmol L(-1). In comparison with single organic fluorophores, functionalized CdS quantum dots are brighter, more stable against photobleaching and do not suffer from blinking. Furthermore, the proposed method shows higher sensitivity and selectivity. A possible fluorescence enhancement mechanism is also studied.  相似文献   

7.
Cadmium sulfide (CdS) nanoparticles (NPs) capped with poly(acrylic acid) (PAA) were prepared in aqueous solutions from Cd(NO3)2 and Na2S. Influence of the COOH/Cd ratio (0.8-12.5), reaction pH (5.5 and 7.5), and PAA molecular weight (2100 and 5100 g/mol) on the particle size, colloidal stability, and photoluminescence were investigated. A Cd/S ratio of <1 causes ineffective passivization of the surface with the carboxylate and therefore results in a red shift of the absorption band and a significant drop in photoluminescence. Therefore, the Cd/S ratio was fixed at 1.1 for all experiments studying the mentioned variables. PAA coating provided excellent colloidal stability at a COOH/Cd ratio above 1. Absorption edges of PAA-coated CdS NPs are in the range of 460-508 nm. The size of the NPs increases slightly with increasing PAA molecular weight and COOH/Cd ratio at pH 7.5. It is demonstrated that there is a critical COOH/Cd ratio (1.5-2) that maximizes the photoluminescence intensity and quantum yield (QY, 17%). Above this critical ratio, which corresponds to smaller crystal sizes (3.7-4.1 nm) for each reaction set, the quantum yield decreases and the crystal size increases. Moreover, CdS NPs prepared at pH 7.5 have significantly higher QY and absorb at lower wavelengths in comparison with those prepared at pH 5.5. Luminescence quenching has not been observed over 8 months.  相似文献   

8.
9.
Gallium arsenide nanocrystals of 1.5 to 9.0 nm were prepared in triethylene glycol dimethylether (triglyme), and photoinduced reduction of methylviologen (MV2+) on the nanocrystals was investigated. The rate of MV+ production determined for an initial stage of photoinduced reduction of MV2+ was found to be low compared to that determined for bulk GaAs particles of 0.4 mm, if the rate was evaluated for unit surface area of the semiconductor particles. To account for this finding, the apparent association constant of MV2+ to GaAs was determined, which suggested that molecular species which worked as stabilizing agents for the GaAs nanocrystals retarded the adsorption of MV2+ onto the particle surfaces.  相似文献   

10.
Multicolor and water-soluble CdTe quantum dots (QDs) were synthesized with thioglycolic acid (TGA) as stabilizer. These QDs have a good size distribution, display high fluorescence quantum yield, and can be applied to the ultrasensitive detection of Pb(II) ion by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and quenching of luminescence is most effective for the smallest particles. The quenching mechanism is discussed. Fairly selective detection was accomplished by utilizing QDs with a diameter of 1.6?nm which resulted in a detection limit of 4.7?nmol?L?1 concentration of Pb(II). The method was successfully applied to the determination of Pb(II) in spinach and citrus leaves, and the results are in good agreement with those obtained with atomic absorption spectrometry.
Figure
Five colors water-soluble CdTe QDs are synthesized with thioglycolic acid as a stabilizer. These QDs can be applied to the ultrasensitive detection of Pb2+ by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and the quenching of luminescence is most effective when the smallest particles are used. The detection limit is 4.7?nmol?L?1 when QDs-I (1.6?nm) are used, which is the lowest in the current related study.  相似文献   

11.
We have found that the DNA cleaving activity of quantum dots and 1,10-phenanthroline-Cu(II) complex is significantly enhanced when they are combined.  相似文献   

12.
We use low temperature (10K) optical hole-burning and fluorescence line narrowing spectroscopy to investigate the electronic properties of CdSe nanocrystallites (quantum dots) as a function of crystallite diameter (20–80Å). We discuss how the homogeneous linewidth of the HOMO-LUMO transition, the energy shift between the absorbing and emitting state, and the LO phonon frequency vary with nanocrystallite size.  相似文献   

13.
A methodology for the production of II–VI semiconductor nanocrystallites employing organometallic precursors has been developed. The rapid pyrolysis of reagents in a coordinating solvent provides temporally discrete nucleation. Subsequent controlled growth allows the production of macroscopic quantities of nanocrystallites with consistent structure, surface derivatization and a high degree of monodispersity. The samples produced are structurally characterized with a combination of X-ray and Electron Beam based techniques.  相似文献   

14.
The preparation of thin glass films having waveguiding properties with microcrystallites of CdS and CuCl is elaborated, their nonlinear properties measured and the electronic levels of the quantum dots presented. These are compared with their properties in bulk glass.Enrique Berman Professor of Solar Energy.  相似文献   

15.
Polydimethylaminoethyl methacrylate (PDMAEMA) was used as a multidentate ligand to modify the surface of CdSe/ZnS core-shell colloidal quantum dots in toluene with trioctylphosphine oxide (TOPO) as the surface ligand. Adsorption of PDMAEMA was accompanied by release of TOPO. The process is free of agglomeration, and the modified nanocrystals become soluble in methanol. The photoluminescence properties are well-preserved in either toluene or methanol.  相似文献   

16.
Gly-His-Leu-Leu-Cys coated CdS quantum dots detected Cu2+ and Ag+ selectively with high sensitivity, below 0.5 microM.  相似文献   

17.
We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.  相似文献   

18.
Xia YS  Zhu CQ 《Talanta》2008,75(1):215-221
Thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) were synthesized in aqueous medium, and their interaction with metal cations was studied with UV-vis absorption, steady-state and time-resolved fluorescence spectra. The results demonstrated that Hg(II), Cu(II) and Ag(I) could effectively quench the QD emission based on different action mechanisms: Cu(II) and Ag(I) quenched CdTe QDs because they bound onto particle surface and facilitated non-radiative electron/hole recombination annihilation of QDs; electron transfer process between the capping ligands and Hg(II) was mainly responsible for the remarkable quenching effect of Hg(II). To prevent the approach of metal cations to QD core, the original TGA-capped CdTe QDs were further coated by denatured bovine serum albumin (dBSA). It was found that the dBSA-coated CdTe QDs could be quenched effectively by Hg(II), but Cu(II) and Ag(I) could hardly quench the QDs even at fairly higher concentration levels because the dBSA shell layer effectively prevented the binding of metal cations onto the QD core. On the basis of this fact, a simple, rapid and specific method for Hg(II) determination was proposed. Under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of Hg(II) ranging from 0.012 x 10(-6) to 1.5 x 10(-6) mol L(-1). The limit of detection for Hg(II) was 4.0 x 10(-9) mol L(-1). The developed method was successfully applied to the detection of trace Hg(II) in real samples.  相似文献   

19.
A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50–1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 μs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum.
Graphical abstract Schematic of a novel phosphorescent method for the detection of Fe2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.
  相似文献   

20.
Summary The ligand 3-azabicyclo[3.2.2]nonane-3-thiocarboxylic acid 2-[1-(2-pyridinyl)ethylidene]hydrazide (HL), which is observed in an unusual tautomeric form in the solid state, and its selenium analogue (HLSe) have been used to prepare a series of nickel(II) complexes. Compounds of the general formula [NiLX] (X=Cl, Br, NCS, N3, NO2 or NCSe) as well as [Ni(LSe)Cl] have been found to be diamagnetic, planar complexes. A single crystal study of [NiL(NCS)] shows the deprotonated ligand bound in a tridentate mannervia its pyridyl nitrogen, imine nitrogen and the thione sulphur atom with the nitrogen atom of the thiocyanato-ligand occupying the fourth coordination position. The solids prepared from the nickel(II) salts having tetrafluoroborate, nitrate and iodide ions approximate to octahedral symmetry and have neutral HL ligands coordinated in a bidentate fashionvia the pyridine and imine nitrogens with the remaining coordination sites being occupied by the anions or water molecules. The [NiL2] solid is also octahedral with the two deprotonated ligands bonding as tridentate groupsvia the same atoms as in the [NiLX] complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号