首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
6-Deoxyerythronolide B synthase (DEBS) is a modular polyketide synthase (PKS) responsible for the biosynthesis of 6-dEB (1), the parent aglycone of the broad spectrum macrolide antibiotic erythromycin. Individual DEBS modules, which contain the catalytic domains necessary for each step of polyketide chain elongation and chemical modification, can be deconstructed into constituent domains. To better understand the intrinsic stereospecificity of the ketoreductase (KR) domains, an in vitro reconstituted system has been developed involving combinations of ketosynthase (KS)-acyl transferase (AT) didomains with acyl-carrier protein (ACP) and KR domains from different DEBS modules. Incubations with (2S,3R)-2-methyl-3-hydroxypentanoic acid N-acetylcysteamine thioester (2) and methylmalonyl-CoA plus NADPH result in formation of a reduced, ACP-bound triketide that is converted to the corresponding triketide lactone 4 by either base- or enzyme-catalyzed hydrolysis/cyclization. A sensitive and robust GC-MS technique has been developed to assign the stereochemistry of the resulting triketide lactones, on the basis of direct comparison with synthetic standards of each of the four possible diasteromers 4a-4d. Using the [KS][AT] didomains from either DEBS module 3 or module 6 in combination with KR domains from modules 2 or 6 gave in all cases exclusively (2R,3S,4R,5R)-3,5-dihydroxy-2,4-dimethyl-n-heptanoic acid-delta-lactone (4a). The same product was also generated by a chimeric module in which [KS3][AT3] was fused to [KR5][ACP5] and the DEBS thioesterase [TE] domain. Reductive quenching of the ACP-bound 2-methyl-3-ketoacyl triketide intermediate with sodium borohydride confirmed that in each case the triketide intermediate carried only an unepimerized d-2-methyl group. The results confirm the predicted stereospecificity of the individual KR domains, while revealing an unexpected configurational stability of the ACP-bound 2-methyl-3-ketoacyl thioester intermediate. The methodology should be applicable to the study of any combination of heterologous [KS][AT] and [KR] domains.  相似文献   

2.
Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxypyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed k(cat) 0.5 ± 0.1 min(-1) and K(m)(1) 19 ± 5 mM at 0.5 mM MM-CoA and k(cat)(app) 0.26 ± 0.02 min(-1) and K(m)(MM-CoA) 0.11 ± 0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(-)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with the recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2.  相似文献   

3.
The dehydratase (DH) domain of module 4 of the 6-deoxyerythronolide B synthase (DEBS) has been shown to catalyze an exclusive syn elimination/syn addition of water. Incubation of recombinant DH4 with chemoenzymatically prepared anti-(2R,3R)-2-methyl-3-hydroxypentanoyl-ACP (2a-ACP) gave the dehydration product 3-ACP. Similarly, incubation of DH4 with synthetic 3-ACP resulted in the reverse enzyme-catalyzed hydration reaction, giving an ~3:1 equilbrium mixture of 2a-ACP and 3-ACP. Incubation of a mixture of propionyl-SNAC (4), methylmalonyl-CoA, and NADPH with the DEBS β-ketoacyl synthase-acyl transferase [KS6][AT6] didomain, DEBS ACP6, and the ketoreductase domain from tylactone synthase module 1 (TYLS KR1) generated in situ anti-2a-ACP that underwent DH4-catalyzed syn dehydration to give 3-ACP. DH4 did not dehydrate syn-(2S,3R)-2b-ACP, syn-(2R,3S)-2c-ACP, or anti-(2S,3S)-2d-ACP generated in situ by DEBS KR1, DEBS KR6, or the rifamycin synthase KR7 (RIFS KR7), respectively. Similarly, incubation of a mixture of (2S,3R)-2-methyl-3-hydroxypentanoyl-N-acetylcysteamine thioester (2b-SNAC), methylmalonyl-CoA, and NADPH with DEBS [KS6][AT6], DEBS ACP6, and TYLS KR1 gave anti-(2R,3R)-6-ACP that underwent syn dehydration catalyzed by DEBS DH4 to give (4R,5R)-(E)-2,4-dimethyl-5-hydroxy-hept-2-enoyl-ACP (7-ACP). The structure and stereochemistry of 7 were established by GC-MS and LC-MS comparison of the derived methyl ester 7-Me to a synthetic sample of 7-Me.  相似文献   

4.
Picromycin/methymycin synthase (PICS) is a modular polyketide synthase (PKS) that is responsible for the biosynthesis of both 10-deoxymethynolide (1) and narbonolide (2), the parent 12- and 14-membered aglycone precursors of the macrolide antibiotics methymycin and picromycin, respectively. PICS module 2 is a dehydratase (DH)-containing module that catalyzes the formation of the unsaturated triketide intermediate using malonyl-CoA as the chain extension substrate. Recombinant PICS module 2+TE, with the PICS thioesterase domain appended to the C-terminus to allow release of polyketide products, was expressed in Escherichia coli. Purified PICS module 2+TE converted malonyl-CoA and 4, the N-acetylcysteamine thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid, to a 1:2 mixture of the triketide acid (4S,5R)-4-methyl-5-hydroxy-2-heptenoic acid (5) and (3S,4S,5R)-3,5-dihydroxy-4-methyl-n-heptanoic acid-delta-lactone (10) with a combined kcat of 0.6 min(-1). The triketide lactone 10 is formed by thioesterase-catalyzed cyclization of the corresponding d-3-hydroxyacyl-SACP intermediate, a reaction which competes with dehydration catalyzed by the dehydratase domain. PICS module 2+TE showed a strong preference for the syn-diketide-SNAC 4, with a 20-fold greater kcat/K(m) than the anti-(2S,3S)-diketide-SNAC 14, and a 40-fold advantage over the syn-(2R,3S)-diketide-SNAC 13. PICS module 2(DH(0))+TE, with an inactivated DH domain, produced exclusively 10, while three PICS module 2(KR(0))+TE mutants, with inactivated KR domains, produced exclusively or predominantly the unreduced triketide ketolactone, (4S,5R)-3-oxo-4-methyl-5-hydroxy-n-heptanoic acid-delta-lactone (7). These studies establish for the first time the structure and stereochemistry of the intermediates of a polyketide chain elongation cycle catalyzed by a DH-containing module, while confirming the importance of key active site residues in both KR and DH domains.  相似文献   

5.
Polyketide synthases (PKSs) catalyze the production of numerous biologically important natural products via repeated decarboxylative condensation reactions. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), consist of multiple catalytic modules, each containing a unique set of covalently linked catalytic domains. To better understand the engineering opportunities of these assembly lines, the extender unit and acyl carrier protein (ACP) specificity of keto synthase (KS) domains from modules 3 and 6 of DEBS were analyzed. These studies were undertaken with a newly developed didomain [KS][AT] construct, which lacks its own ACP domain and can therefore be interrogated with homologous or heterologous ACP or acyl-ACP substrates. By substituting the natural methylmalonyl extender unit with a malonyl group, a modest role was demonstrated for the KS in recognition of the nucleophilic substrate. The KS domain from module 3 of DEBS was found to exhibit a distinct ACP-recognition profile from the KS domain of module 6. On the basis of the above kinetic insights, a hybrid module was constructed ([KS3][AT3][KR5][ACP5][TE]) which displayed substrate recognition and elongation capabilities consistent with the natural module 3 protein. Unlike module 3, however, which lacks a ketoreductase (KR) domain, the hybrid module was able to catalyze reduction of the beta-ketothioester product of chain elongation. The high expression level and functionality of this hybrid protein demonstrates the usefulness of kinetic analysis for hybrid module design.  相似文献   

6.
BACKGROUND: Polyketides are structurally diverse natural products with a range of medically useful activities. Non-aromatic bacterial polyketides are synthesised on modular polyketide synthase multienzymes (PKSs) in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We show that the ketoreductase (KR) domains of modules 5 and 6 of the erythromycin PKS, housed in the multienzyme subunit DEBS3, exert an unexpectedly low level of stereochemical control in reducing the keto group of a synthetic analogue of the diketide intermediate. This led us to construct a hybrid triketide synthase based on DEBS3 with ketosynthase domain ketosynthase (KS)5 replaced by the loading module and KS1. The construct in vivo produced two major triketide stereoisomers, one expected and one surprising. The latter was of opposite configuration at three out of the four chiral centres: the branching alkyl centre was that produced by KS1 and, surprisingly, both hydroxyl centres produced by the reduction steps carried out by KR5 and KR6 respectively. CONCLUSIONS: These results demonstrate that the epimerising activity associated with module 1 of the erythromycin PKS can be conferred on module 5 merely by transfer of the KS1 domain. Moreover, the normally precise stereochemical control observed in modular PKSs is lost when KR5 and KR6 are challenged by an unfamiliar substrate, which is much smaller than their natural substrates. This observation demonstrates that the stereochemistry of ketoreduction is not necessarily invariant for a given KR domain and underlines the need for mechanistic understanding in designing genetically engineered PKSs to produce novel products.  相似文献   

7.
The ketoreductase (KR) domains eryKR(1) and eryKR(2) from the erythromycin-producing polyketide synthase (PKS) reduce 3-ketoacyl-thioester intermediates with opposite stereospecificity. Modeling of eryKR(1) and eryKR(2) showed that conserved amino acids previously correlated with production of alternative alcohol configurations lie in the active site. eryKR(1) domains mutated at these positions showed an altered stereochemical outcome in reduction of (2R, S)-2-methyl-3-oxopentanoic acid N-acetylcysteamine thioester. The wild-type eryKR(1) domain exclusively gave the (2S, 3R)-3-hydroxy-2-methylpentanoic acid N-acetylcysteamine thioester, while the double mutant (F141W, P144G) gave only the (2S, 3S) isomer, a switch of the alcohol stereochemistry. Mutation of the eryKR(2) domain, in contrast, greatly increased the proportion of the wild-type (2R, 3S)-alcohol product. These data confirm the role of key residues in stereocontrol and suggest an additional way to make rational alterations in polyketide antibiotic structure.  相似文献   

8.
A system is reported for the recombinant expression of individual ketoreductase (KR) domains from modular polyketide synthases (PKSs) and scrutiny of their intrinsic specificity and stereospecificity toward surrogate diketide substrates. The eryKR(1) and the tylKR(1) domains, derived from the first extension module of the erythromycin PKS and the tylosin PKS, respectively, both catalyzed reduction of (2R, S)-2-methyl-3-oxopentanoic acid N-acetylcysteamine thioester, with complete stereoselectivity and stereospecificity, even though the substrate is not tethered to an acyl carrier protein or an intact PKS multienzyme. In contrast, and to varying degrees, the isolated enzymes eryKR(2), eryKR(5), and eryKR(6) exercised poorer control over substrate selection and the stereochemical course of ketoreduction. These data, together with modeling of diketide binding to KR(1) and KR(2), demonstrate the fine energetic balance between alternative modes of presentation of ketoacylthioester substrates to KR active sites.  相似文献   

9.
BACKGROUND: Polyketides are compounds that possess medically significant activities. The modular nature of the polyketide synthase (PKS) multienzymes has generated interest in bioengineering new PKSs. Rational design of novel PKSs, however, requires a greater understanding of the stereocontrol mechanisms that operate in natural PKS modules. RESULTS: The N-acetyl cysteamine (NAC) thioester derivative of the natural beta-keto diketide intermediate was incubated with DEBS1-TE, a derivative of the erythromycin PKS that contains only modules 1 and 2. The reduction products of the two ketoreductase (KR) domains of DEBS1-TE were a mixture of the (2S, 3R) and (2R,3S) isomers of the corresponding beta-hydroxy diketide NAC thioesters. Repeating the incubation using a DEBS1-TE mutant that only contains KR1 produced only the (2S,3R) isomer. CONCLUSIONS: In contrast with earlier results, KR1 selects only the (2S) isomer and reduces it stereospecifically to the (2S, 3R)-3-hydroxy-2-methyl acyl product. The KR domain of module 1 controls the stereochemical outcome at both methyl-and hydroxyl-bearing chiral centres in the hydroxy diketide intermediate. Earlier work showed that the normal enzyme-bound ketoester generated in module 2 is not epimerised, however. The stereochemistry at C-2 is therefore established by a condensation reaction that exclusively gives the (2R)-ketoester, and the stereo-chemistry at C-3 by reduction of the keto group. Two different mechanisms of stereochemical control, therefore, operate in modules 1 and 2 of the erythromycin PKS. These results should provide a more rational basis for designing hybrid PKSs to generate altered stereochemistry in polyketide products.  相似文献   

10.
The biosynthesis of polyketides by type I modular polyketide synthases (PKS) relies on co-ordinated interactions between acyl carrier protein (ACP) domains and catalytic domains within the megasynthase. Despite the importance of these interactions, and their implications for biosynthetic engineering efforts, they remain poorly understood. Here, we report the molecular details of the interaction interface between an ACP domain and a ketoreductase (KR) domain from a trans-acyltransferase (trans-AT) PKS. Using a high-throughput mass spectrometry (MS)-based assay in combination with scanning alanine mutagenesis, residues contributing to the KR-binding epitope of the ACP domain were identified. Application of carbene footprinting revealed the ACP-binding site on the KR domain surface, and molecular docking simulations driven by experimental data allowed production of an accurate model of the complex. Interactions between ACP and KR domains from trans-AT PKSs were found to be specific for their cognate partner, indicating highly optimised interaction interfaces driven by evolutionary processes. Using detailed knowledge of the ACP:KR interaction epitope, an ACP domain was engineered to interact with a non-cognate KR domain partner. The results provide novel, high resolution insights into the ACP:KR interface and offer valuable rules for future engineering efforts of biosynthetic assembly lines.

The interaction epitope between a cognate KR–ACP domain pairing from a trans-AT polyketide synthase is elucidated in molecular detail, providing unique insights into recognition and specificity of the interface.  相似文献   

11.
Streptomyces coelicolor CH999/pJRJ2 harbors a plasmid encoding DEBS(KS1 degrees ), a mutant form of 6-deoxyerythronolide B synthase that is blocked in the formation of 6-deoxyerythronolide B (1, 6-dEB) due to a mutation in the active site of the ketosynthase (KS1) domain that normally catalyzes the first polyketide chain elongation step of 6-dEB biosynthesis. Administration of (2E,4S,5R)-2,4-dimethyl-5-hydroxy-2-heptenoic acid, N-acetylcysteamine thioester (6) an unsaturated triketide analogue of the natural triketide chain elongation intermediate to cultures of S. coelicolor CH999/pJRJ2 results in formation of a 16-membered macrolactone, which is isolated in the hemiketal form 33. The formation of the octaketide 33 indicates that the triketide substrate has been processed by DEBS module 2 as if it were a diketide analogue. The substrate specificity of this novel reaction has been explored by the incubation of three additional analogues of the unsaturated triketide 6, compounds 18, 31, and 32, with S. coelicolor CH999/pJRJ2, resulting in the formation of the corresponding macrolactones 34, 35, and 36. By contrast, the unsaturated triketide 10, lacking a methyl group at C-2, did not give rise to any detectable macrolactone product when incubated with S. coelicolor CH999/pJRJ2.  相似文献   

12.
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.  相似文献   

13.
Polyketide synthases (PKSs) usually employ a ketoreductase (KR) to catalyze the reduction of a β‐keto group, followed by a dehydratase (DH) that drives the dehydration to form a double bond between the α‐ and β‐carbon atoms. Herein, a DH*‐KR* involved in FR901464 biosynthesis was characterized: DH* acts on glyceryl‐S‐acyl carrier protein (ACP) to yield ACP‐linked pyruvate; subsequently KR* reduces α‐ketone that yields L ‐lactyl‐S‐ACP as starter unit for polyketide biosynthesis. Genetic and biochemical evidence was found to support a similar pathway that is involved in the biosynthesis of lankacidins. These results not only identified new PKS domains acting on different substrates, but also provided additional options for engineering the PKS starter pathway or biocatalysis.  相似文献   

14.
Picromycin synthase (PICS) is a multifunctional, modular polyketide synthase (PKS) that catalyzes the conversion of methylmalonyl-CoA to narbonolide and 10-deoxymethynolide, the macrolide aglycone precursors of the antibiotics picromycin and methymycin, respectively. PICS modules 5 and 6 were each expressed in Escherichia coli with a thioesterase domain at the C-terminus to allow release of polyketide products. The substrate specificity of PICS modules 5+TE and 6+TE was investigated using N-acetylcysteamine thioesters of 2-methyl-3-hydroxy-pentanoic acid as diketide analogues of the natural polyketide chain elongation substrates. PICS module 5+TE could catalyze the chain elongation of only the syn diketide (2S,3R)-4, while PICS module 6+TE processed both syn diastereomers, (2S,3R)-4 and (2R,3S)-5, with a 2.5:1 preference in k(cat)/K(m) for 5 but did not turn over either of the two anti diketides. The observed substrate specificity patterns are in contrast to the 15-100:1 preference for 4 over 5 previously established for several modules of the closely related erythromycin PKS, 6-deoxyerythronolide B synthase (DEBS).  相似文献   

15.
A tetraketide synthase containing a loading module (LM), the extension modules erythromycin module 1, rapamycin module 2, and erythromycin module 2 (LM-Ery1-Rap2-Ery2-TE), when expressed in Saccharopolyspora erythraea strain JC2, produced as previously reported a mixture of tetraketide lactones (minor products) and triketide lactones (major products). Several alternative plausible mechanisms by which this "skipping" phenomenon might occur may be proposed. Site-directed mutagenesis of the ketosynthase (KS) and acylcarrier protein (ACP) domains in the interpolated module has shown that skipping within the hybrid PKS involves passage of the growing polyketide through the interpolated module, by direct ACP-to-ACP transfer of the polyketide chain.  相似文献   

16.
Many polyketides are synthesized by a class of multifunctional enzymes called type I modular polyketide synthases (PKSs). Several reports have described the power of predictively altering polyketide structure by replacing individual PKS domains with homologues from other PKSs. For example, numerous erythromycin analogues have been generated by replacing individual methylmalonyl-specific acyl transferase (AT) domains of the 6-deoxyerythronolide B synthase (DEBS) with malonyl-, ethylmalonyl-, or methoxymalonyl-specific domains. However, the construction of hybrid PKS modules often attenuates product formation both kinetically and distributively. The molecular basis for this mechanistic imperfection is not understood. We have systematically analyzed the impact of replacing an AT domain of DEBS on acyl-AT formation, acyl-CoA:HS-NAc acyl transferase activity, acyl-CoA:ACP acyl transferase activity (nucleophile charging), acyl-SNAc:ketosynthase acyl transferase activity (electrophile charging), and beta-ketoacyl ACP synthase activity (condensation). As usual, domain junctions were located in interdomain regions flanking the AT domain. Kinetic analysis of hybrid modules containing either malonyl transferase or methylmalonyl transferase domains revealed a 15-20-fold decrease in overall turnover numbers of the hybrid modules as compared to the wild-type module. In contrast, both the activity and the specificity of the heterologous AT domains remained unaffected. Moreover, no defects could be detected in the ability of the heterologous AT domains to catalyze acyl-CoA:ACP acyl transfer. Single turnover studies aimed at directly probing the ketosynthase-catalyzed reaction led to two crucial findings. First, wild-type modules catalyzed chain elongation with comparable efficiency regardless of whether methylmalonyl-ACP or malonyl-ACP were the nucleophilic substrates. Second, chain elongation in all hybrid modules tested was seriously attenuated relative to the wild-type module. Our data suggest that, as currently practiced, the most deleterious impact of AT domain swapping is not on the substrate specificity. Rather, it is due to the impaired ability of the KS and ACP domains in the hybrid module to catalyze chain elongation. Consistent with this proposal, limited proteolysis of wild-type and hybrid modules showed major differences in cleavage patterns, especially in the region between the KR and ACP domains.  相似文献   

17.
A class of Streptomyces aromatic polyketide antibiotics, the benzoisochromanequinones, all shows trans stereochemistry at C-3 and C-15 in the pyran ring. The opposite stereochemical control found in actinorhodin (3S, 15R, ACT) from S. coelicolor A3(2) and dihydrogranaticin (3R, 15S, DHGRA) from S. violaceoruber Tü22 was studied by functional expression of the potentially relevant ketoreductase genes, actIII, actVI-ORF1, gra-ORF5, and gra-ORF6. A common bicyclic intermediate was postulated to undergo stereospecific reduction to provide either the 3-(S) or the 3-(R) configuration of an advanced intermediate, 4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho[2,3-c]pyran-3-acetic acid (DNPA). Combinations of the four ketoreductase genes were coexpressed with the early biosynthetic genes encoding a type II minimal polyketide synthase, aromatase, and cyclase. gra-ORF6 was essential to produce (R)-DNPA in DHGRA biosynthesis. Out of the various recombinants carrying the relevant ketoreductases, the set of gra-ORF5 and -ORF6 under translational coupling (on pIK191) led to the most efficient production of (R)-DNPA as a single product, implying a possible unique cooperative function whereby gra-ORF6 might encode a "guiding" protein to control the regio- and stereochemical course of reduction at C-3 catalyzed by the gra-ORF5 protein. Updated BLAST-based database analysis suggested that the gra-ORF6 product, a putative short-chain dehydrogenase, has virtually no sequence homology with the actVI-ORF1 protein, which was previously shown to determine the 3-(S) configuration of DNPA in ACT biosynthesis. This demonstrates an example of opposite stereochemical control in antibiotic biosynthesis, providing a key branch point to afford diverse chiral metabolic pools.  相似文献   

18.
BACKGROUND: Polyketides are structurally diverse natural products that have a range of medically useful activities. Nonaromatic bacterial polyketides are synthesised on modular polyketide synthase (PKS) multienzymes, in which each cycle of chain extension requires a different 'module' of enzymatic activities. Attempts to design and construct modular PKSs that synthesise specified novel polyketides provide a particularly stringent test of our understanding of PKS structure and function. RESULTS: We have constructed bimodular and trimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only modules 1 and 2 and a thioesterase (TE), by substituting multiple domains with appropriate counterparts derived from the rapamycin PKS. Hybrid PKSs were obtained that synthesised the predicted target triketide lactones, which are simple analogues of cholesterol-lowering statins. In constructing intermodular fusions, whether between modules in the same or in different proteins, it was found advantageous to preserve intact the acyl carrier protein-ketosynthase (ACP-KS) didomain that spans the junction between successive modules. CONCLUSIONS: Relatively simple considerations govern the construction of functional hybrid PKSs. Fusion sites should be chosen either in the surface-accessible linker regions between enzymatic domains, as previously revealed, or just inside the conserved margins of domains. The interaction of an ACP domain with the adjacent KS domain, whether on the same polyketide or not, is of particular importance, both through conservation of appropriate protein-protein interactions, and through optimising molecular recognition of the altered polyketide chain in the key transfer of the acyl chain from the ACP of one module to the KS of the downstream module.  相似文献   

19.
Site-directed mutagenesis and gene replacement were used to inactivate two ketoreductase (KR) domains within the amphotericin polyketide synthase in Streptomyces nodosus. The KR12 domain was inactivated in the DeltaamphNM strain, which produces 16-descarboxyl-16-methyl-amphotericins. The resulting mutant produced low levels of the expected 15-deoxy-15-oxo analogs that retained antifungal activity. These compounds can be useful for further chemical modification. Inactivation of the KR16 domain in the wild-type strain led to production of 7-oxo-amphotericin A and 7-oxo-amphotericin B in good yield. 7-oxo-amphotericin B was isolated, purified, and characterized as the N-acetyl methyl ester derivative. 7-oxo-amphotericin B had good antifungal activity and was less hemolytic than amphotericin B. These results indicate that modification at the C-7 position can improve the therapeutic index of amphotericin B.  相似文献   

20.
While X-ray and NMR structures are now available for most components of the Type II fatty acid synthase (FAS), there are no structures for Type I FAS domains. A region from the mammalian (rat) FAS, including the putative acyl carrier protein (ACP), has been cloned and over-expressed. Here we report multinuclear, multidimensional NMR studies which show that this isolated ACP domain contains four alpha-helices (residues 8-16 [1]; 41-51 [2]; 58-63 [3] and 66-74 [4]) and an overall global fold characteristic of ACPs from both Type II FAS and polyketide synthases (PKSs). The overall length of the structured ACP domain (67 residues) is smaller than the structured regions of the Eschericia coli FAS ACP (75 residues), the actinorhodin PKS ACP (78 residues) and the Bacillus subtilis FAS ACP (76 residues). We further show that the rat FAS ACP is recognised as an efficient substrate by enzymes known to modify Type II ACPs including phosphopantetheinyl and malonyl transferases, but not by the heterologous S. coelicolor minimal polyketide synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号