首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical study on the interaction of two spherical drops in the thermocapillary migration is presented in the microgravity environment. Finite-difference methods are adopted. The interfaces of the drops are captured by the front-tracking technique. It is found that the arrangement of the drops directly influences their migration and interaction, and the motion of one drop is mainly determined by the disturbed temperature field because of the existence of the other drop.  相似文献   

2.
利用日本微重力中心800m落井装置,完成了半浮区液桥振荡对流的微重力实验,对振荡对流的典型物理量诸如内部温度、流场、自由面边缘变化及表面波进行了综合测量。实验结果给出了振荡对流由地球重力环境向微重力环境的过渡,以及不同几何参数半浮区液桥的振荡特征,并首次获得了微重力环境下热毛细对流的表面波位形及边缘振荡特征.  相似文献   

3.
The unsteady double diffusion of the boundary layer with the nanofluid flow near a three-dimensional(3 D) stagnation point body is studied under a microgravity environment. The effects of g-jitter and thermal radiation exist under the microgravity environment, where there is a gravitational field with fluctuations. The flow problem is mathematically formulated into a system of equations derived from the physical laws and principles under the no-slip boundary condition. With the semi-similar tran...  相似文献   

4.
In the present paper, the experimental studies on thermocapillary convection are reviewed. The author‘s interest is mainly focused on the onset of oscillatory thermocapillary convection,the features of oscillatory flow pattern, and the critical Marangoni number related with temperature and free surface oscillation. The coordinated measurement in a microgravity environment of a drops haft is also addressed.  相似文献   

5.
本文讨论重力对不同高度、直径比液桥的热毛细对流的影响。当液桥高度、直径比增大时,液桥中的等流函数线呈双涡结构,这种流动图样并不必然与热毛细振荡流相联系。在地面热毛细对流实验中模拟空间微重力情况,液桥高度需小于1.5mm。在微重力环境中,液桥内的流场和温度分布介于地面相同参数液桥的上部加热和下部加热两种结果之间。因此,可以用地面实验结果估计空间液桥的对流和热输运情况。  相似文献   

6.
Researches on two-phase flow and pool boiling heat transfer in microgravity, which included ground-based tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.  相似文献   

7.
微重力气液两相流动与池沸腾传热   总被引:1,自引:0,他引:1  
赵建福  彭超  李晶 《力学进展》2010,40(4):460-470
综述了近年来中国科学院微重力重点实验室(国家微重力实验室)完成的一系列微重力气液两相流动与池沸腾传热方面的地基实验、飞行实验和理论研究等方面获得的主要成果.在微重力气液两相流动方面,提出了半理论Weber数模型用于预测微重力条件下气液两相弹-环状流转换,并采用Monte Carlo方法,针对气泡初始尺寸对泡-弹状流转换的影响进行数值研究.通过俄罗斯"和平号"空间站与IL-76失重飞机实验,获得了微重力下的气液两相流型图,与此同时在地面利用小尺度毛细管模型模拟了微重力气液两相流动特征.实验测量了微重力气液两相流压降,并基于微重力流动特性建立了一个泡状流压降关联模型.在微重力池沸腾传热方面,利用我国返回式卫星完成了两次空间实验,其中,第22颗返回式卫星搭载铂丝表面R113池沸腾实验采用控制温度的稳态加热方式,而实践8号育种卫星搭载平面FC-72池沸腾实验则采用控制加热电压的准稳态加热方式.同时,还进行了地面常重力和落塔短时微重力条件下的对比实验研究.观察到丝状加热表面微重力时轻微的传热强化现象,而平板加热表面微重力核态池沸腾低热流时传热强化、高热流时传热恶化.微重力实验中观察到气泡脱落前存在横向运动现象,据此分析了气泡行为与传热之间关系,并提出了一个预测丝状加热表面气泡脱落直径的半理论模型.旨在对相关领域的进一步发展和空间两相流系统的应用提供数据及理论支持.  相似文献   

8.
The dynamics of thermal ripples at the interface of a volatile pure liquid (C2H5OH) is studied experimentally and numerically. Liquid evaporates under a flow of inert gas (N2) circulating along the interface. The evaporation rate is varied by regulating both the gas flow rate and the gas pressure. Experiments in microgravity environment allowed to identify a transition to “interfacial turbulence,” along which some particular events such as nearly periodic and possible intermittent behaviors. Direct numerical simulations have been performed, and compare qualitatively well with experimental results, offering new insights into the physical mechanisms involved. Small-scale ripples appear to arise from a secondary instability of large-scale convection cells and their motion seems to follow the corresponding large-scale surface flow. The relative role of surface tension and buoyancy in triggering these flows is assessed by comparing experiments and simulations in both microgravity and ground conditions. Qualitative features compare satisfactorily well such as typical speed and orientation of the thermal ripples, as well as spiral flow in the bulk.  相似文献   

9.
 The microporosity formation in a vertical unidirectionally solidifying Al–4.1%Cu alloy casting is modeled in both microgravity and standard gravity as well as in the conditions of decreased (Moon, Mars) and increased (Jupiter) gravity. Due to the unique opportunities offered by a low-gravity environment (absence of metallostatic pressure and of natural convection in the solidifying alloy) future microgravity experiments will significantly contribute to attaining a better physical understanding of the mechanisms of microporosity formation. One of the aims of the present theoretical investigation is to predict what microporosity patterns will look like in microgravity in order to help plan a future microgravity experiment. To perform these simulations, the authors suggest a novel three-phase model of solidification that accounts for the solid, liquid, and gas phases in the mushy zone. This model accounts for heat transfer, fluid flow, macrosegregation, and microporosity formation in the solidifying alloy. Special attention is given to the investigation of the influence of microporosity formation on the inverse segregation. Parametric analyses for different initial hydrogen concentrations and different gravity conditions are carried out. Received on 14 April 2000  相似文献   

10.
半浮区液桥热毛细振荡流   总被引:1,自引:0,他引:1  
唐泽眉  阿燕  胡文瑞 《力学学报》1999,31(4):415-422
采用非定常、三维直接数值模拟方法研究大Pr数半浮区液桥热毛细对流从定常流向振荡流的过渡过程.文中详细描述了热毛细振荡流的起振和振荡特征,给出了液桥横截面上振荡流的流场和温度分布.在地面引力场条件下计算的结果与地面实验的结果进行比较,得出液桥水平截面上的流场和温度分布图样以一定的速度旋转,自由表面固定点处流体的环向流速正、负交替变化的一致结论.  相似文献   

11.
现代航天器通常携带大量的液体燃料,液体晃动会影响航天器的姿态稳定性和控制精度,因此需要对晃动行为进行精确建模. 本文系统介绍了微重环境下液体晃动问题的国内外研究现状:理论分析方面,总结了小幅晃动和非线性晃动的研究方法;数值计算方面,介绍了模态分析和CFD (computational fluid dy-namics) 方法在该问题上的应用;物理实验方面,阐述了地面实验和在轨实验的方法及进展. 最后进行总结与评价,并提出了该领域未来需要解决的3 个问题.  相似文献   

12.
水平井开采石油遇到的几个流体力学问题   总被引:1,自引:0,他引:1  
本文从渗流力学和流体动力学方面讨论了利用水平井技术开采石油时在油藏工程和采油工程中遇到的几个力学问题,如水平井产量的计算,水平井非稳态试井及流场分析,水平井井筒内压力降及其对产量的影响、水平井近井油藏和井筒内流体流动耦合等,半提出水平井开采机理仍存在很多基础理论需要研究解决。  相似文献   

13.
The d2-law validity during n-decane droplet vaporization in microgravity environment is examined experimentally. Two sets of experiments are performed, under normal and microgravity, in stagnant hot atmospheric environment. The environment temperature is varied in the range up to 967 K. The droplet is suspended onto the cross point of two micro-fibers of 14 μm in diameter. This technique enables to greatly minimize the effect of fiber on droplet heat and mass transfer. The results show that, for ambient temperatures below approximately 950 K, departure from the d2-law is observed during droplet vaporization in microgravity environment. In addition, the droplet lifetime is longer in microgravity than in normal gravity under the same ambient test conditions. However, for temperatures exceeding approximately 950 K, the experimental results demonstrate that the d2-law holds throughout the entire droplet lifetime, and the mass transfer rate is identical in both microgravity and normal gravity environments.  相似文献   

14.
The mathematical formulation of the Dewar container sloshing dynamics for a partially filled liquid of cryogenic superfluid helium II driven by the gravity gradient or jitter accelerations associated with slew motion in a microgravity environment are studied. The numerical computation of sloshing dynamics is based on the non-inertia container bounded frame and the solution of time-dependent, three-dimensional partial differential equations subjected to the initial and boundary conditions. This study discloses that the capillary effect of sloshing dynamics governs the liquid-vapor interface fluctuations driven by the gravity gradient or jitter accelerations associated with slew motion in a microgravity environment. The peculiar behavior of superfluid helium in response to sloshing dynamics is also investigated.  相似文献   

15.
 At liquid–gas or liquid–liquid interfaces thermocapillary or Marangoni convection develops in the presence of a temperature or concentration gradient along the interface. This convection was not paid much attention up to now, because under terrestrial conditions it is superimposed by the strong buoyancy convection. In a microgravity environment, however, it is the remaining mode of natural convection. During boiling in microgravity it was observed at subcooled conditions. Therefore the question arises about its contribution to the heat transfer. Thus the thermocapillary convection was intensively studied at single gas bubbles in various liquids both experimentally and numerically. Inside a temperature gradient chamber, the overall heat transfer around single bubbles of different volume was measured with calorimetry and the liquid flow with PIV and LDV. In parallel to the experiment, a 2-dimensional mathematical model was worked out and the coupled heat transfer and fluid flow was simulated with a CV-FEM method both under earth gravity level and under microgravity. The results are described in terms of the dimensionless Nusselt-, Peclet-, Marangoni-, Bond- and Prandtl-number. Received on 23 August 1999  相似文献   

16.
Dilute polymer blends and immiscible liquid emulsions are characterized by a globular morphology. The dynamics of a single drop subjected to an imposed flow field has been considered to be a valuable model system to get information on dilute blends. This problem has been studied either theoretically by developing exact theories for small drop deformations or by developing simplified models often based on phenomenological assumptions. In this paper, a critical overview of the available models for the dynamics of a single drop is presented, discussing four different systems, namely the Newtonian system, where a single Newtonian drop is immersed in an infinite Newtonian matrix; the non-Newtonian system, where at least one of the components, the drop fluid or the matrix one, is non-Newtonian; the confined Newtonian system, where the matrix is confined and wall effects alter the drop dynamics; and the confined non-Newtonian system.  相似文献   

17.
This paper discusses the behavior of g-jitter induced free convection in microgravity under the influence of a transverse magnetic field and in the presence of heat generation or absorption effects for a simple system consisting of two parallel impermeable infinite plates held at four different thermal boundary conditions. The governing equations for this problem are derived on the basis of the balance laws of mass, linear momentum, and energy modified to include the effects of thermal buoyancy, magnetic field and heat generation or absorption as well as Maxwell's equations. The fluid is assumed to be viscous, Newtonian and have constant properties except the density in the body force of the balance of linear momentum equation. The governing equations are solved analytically for the induced velocity and temperature distributions as well as for the electric field and total current for electrically-conducting and insulating walls. This is done for isothermal–isothermal, isoflux–isothermal, isothermal–isoflux and isoflux–isoflux thermal boundary conditions. Graphical results for the velocity amplitude and distribution are presented and discussed for various parametric physical conditions.  相似文献   

18.
叶致君  段俐  康琦 《力学学报》2022,54(2):316-325
液滴热毛细迁移是微重力流体科学中的典型科学问题, 微重力液滴动力学研究不仅具有流体力学的理论意义, 而且具有重要的实际应用价值. 建立了二维轴对称激光驱动液滴迁移模型, 通过仿真计算研究微重力环境下激光驱动液滴迁移的过程, 研究了液滴直径、母液参数等对液滴迁移速度及行为的影响. 首先研究了母液和液滴对激光系数均较小, 液滴初始位置不同时液滴的迁移行为; 然后研究了母液对激光吸收系数较小, 液滴对激光吸收系数较大时, 不同液滴直径与母液宽度比条件下液滴的迁移行为. 仿真结果表明: 当母液和液滴对激光的吸收系数都很小时, 液滴迁移的方向主要受到液滴初始位置的影响; 当母液对激光的吸收系数较小, 液滴对激光的吸收系数较大时, 液滴会朝激光方向迁移, 液滴初始位置对迁移方向影响较小, 但液滴直径与母液宽度之比会影响液滴迁移行为. 将模拟结果与YGB理论对比, 仿真结果与理论结果趋势一致. 研究激光驱动液滴迁移的物理机制, 探索界面张力作用机理, 得到激光驱动液滴迁移的规律, 探索对液滴的驱动控制方法.   相似文献   

19.
The effects of magnetic field on the microgravity combustion characteristics of a single methanol droplet in homogeneous flow are numerically investigated to develop an effective magnetic control method for microgravity droplet combustion and spray combustion systems. First, governing equations of microgravity single methanol droplet combustion under a homogeneous magnetic field based on an unsteady two-dimensional, spherically symmetric model including single-step chemistry are presented. Employing numerical modeling, several combustion behaviors are calculated taking into account the effect of the unsteady magnetic field profiles at the flame front. It is found that the flame front becomes deformed and is elongated in the direction of the magnetic field due to the inhomogeneous magnetic pressure distribution at the interface between the fuel vapor phase and the oxidizer phase. This nonuniformity of magnetic pressure is caused by the transient deformation of the magnetic field with refraction of magnetic flux at the flame front due to the difference of magnetic susceptibility between the diamagnetic fuel vapor phase and the paramagnetic oxidizer phase.  相似文献   

20.
The surface tension driven flow in the liquid vicinity of gas bubbles on a heated solid wall has been investigated both, in a reduced gravity environment aboard a sounding rocket, and in an earth-bound experiment. Both experiments deal with temperature gradients within the liquid surrounding of a bubble which cause variations of the surface tension. These, in turn, lead to a liquid flow around the bubble periphery termed thermocapillary or thermal Marangoni-convection. On Earth, this phenomenon is widely masked by buoyancy. We therefore carried out an experiment under reduced gravitational acceleration. In order to simultaneously observe and record the flow field and the temperature field liquid crystal tracers have been applied. These particles offer the feature of selectively reflecting certain wavelengths of incident white light depending on the crystals temperature. Although the bubble injection system did not perform nominally during the flight experiment, some interesting flow characteristics could be observed. Comparison of results obtained in microgravity to data measured on Earth reveal that due to the interaction of thermocapillarity and buoyancy a very compact vortex flow results on ground, while in microgravity the influence on the surface tension driven flow penetrates much deeper into the bulk. This result is of special interest regarding the production of materials in space. Dedicated to Professor Dr. Julius Siekmann on the occasion of his 70th birthday The work described herein was supported by the German space agency DARA (Deutsche Agentur für Raumfahrtangelegenheiten GmbH) through DARA Grant 50 WM 9434. The authors thank the European Space Agency (ESA) for the opportunity to conduct the TEXUS 33 sounding rocket experiment. The flight hardware has been partly built by Daimler-Benz-Aerospace which is gratefully acknowledged. Also, the authors are indebted to Mr. H.-H. Wolf for his careful evaluation of the particle images  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号