首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
引发转移终止剂 (Iniferter)是最早实现活性自由基聚合的方法 ,尽管它对聚合过程控制得不是很好 ,但是可聚合单体多 ,能方便地制备接枝和嵌段共聚物 .因此 ,近 2 0年来 ,它一直是高分子合成化学领域的一个研究热点 ,许多新颖结构的引发转移终止剂被合成并用于制备端基功能化聚合物、遥爪聚合物、大分子单体以及接枝和嵌段聚合物等 .本文扼要综述了引发转移终止剂的发展 ,着重综述了我们研究组在C—C键型高活性热引发转移终止剂、新的光引发转移终止剂、可聚合光引发转移终止剂、新型多功能引发转移终止剂和大分子光引发转移终止剂 5个方面的研究进展  相似文献   

2.
原子转移自由基聚合 (ATRP)是实现活性聚合的一种颇为有效的途径 ,可以实现多种单体的活性自由基聚合 .反向原子转移自由基聚合 (ReverseATRP)的概念始提出于 1995年 ,是对传统ATRP的改进和拓展 .近年来关于此体系的引发剂的拓展、过渡金属及单体的适用性都得到了很大发展 .本文简要综述了我们研究组在反向原子转移自由基聚合方面的研究进展  相似文献   

3.
 本文报道了一种新的基团转移聚合引发剂——1-(N,N-二甲氨基)-1-三甲基硅氧基丁烯-1,对由其引发的GTP、其引发活性、与催化剂及单体用量比对聚合速度、分子量分布的影响进行了研究,得到了分散性较小的实测分子量和理论分子量相近的PMMA。  相似文献   

4.
有机磺酰氯存在下的自由基聚合(Radical polymerization,RP)具有反应条件温和、体系组成简单、单体适用范围较广的优点。本文主要概述了有机磺酰氯在自由基聚合中的应用,主要包括原子转移自由基聚合(Atom transfer radical polymerization,ATRP)的引发剂、单电子转移活性自由基聚合(Single-electron transfer living radical polymerization,SET-LRP)的引发剂和普通自由基聚合的链转移剂。并分析了以上三种应用单体的适用范围、有机磺酰氯结构与聚合活性的关系以及有机磺酰氯(多官能团有机磺酰氯引发剂和链转移单体)在聚合物分子设计中的应用。  相似文献   

5.
可聚合的光引发转移终止剂合成接枝共聚物   总被引:4,自引:0,他引:4  
采用一种可聚合的光引发转移终止剂 ,2 N ,N 二乙基二硫代氨基甲酰氧基乙酸 β 甲基丙烯酰氧基乙酯 (MAEDCA) ,通过两种途径制备了含有聚甲基丙烯酸甲酯 (PMMA)和聚苯乙烯 (PSt)链段的接枝共聚物 .其一是将MAEDCA作为引发剂 ,在紫外光照射下引发MMA聚合 ,得到大分子单体 ,通过大分子单体与St的共聚合得到 .考察了所用大分子单体的分子量和浓度对共聚合的影响 .其二是将MAEDCA作为单体与MMA共聚得到侧链上含有N ,N 二乙基二硫代氨基甲酰氧基 (DC)基团的无规共聚物 ,P(MMA co MAEDCA) .在紫外光照射下 ,P(MMA co MAEDCA)作为大分子引发剂引发St聚合 ,得到P(MMA co MAEDCA) g PSt的共聚物 ,研究了接枝共聚合过程的活性自由基聚合特征  相似文献   

6.
引发剂结构对原子转移自由基聚合反应的影响   总被引:4,自引:0,他引:4  
研究了三种不同结构的引发剂,溴代乙酸乙酯(EBrA)、α-溴代丁乙酯(EBrB)、α-溴代异丁酸乙酸(EBriB)引发的苯乙烯的原子转移自由基聚合反应(ATRP)。发现EBrA引发的苯乙烯的ATRP不是“活性”聚合。EBriB引发的苯乙烯的ATRP引发效率不够高,也不是典型的“活性”聚合。EBrB引发的苯乙烯的ATRP是较为典型的“活性”聚合:聚合物的分子量可以通过调节单体/引发剂的投料量及反应时间来控制,所得聚合物的分子量分布很窄,且有随转化率的增加而逐渐变窄的趋势。  相似文献   

7.
以聚乙二醇甲基丙烯酸酯(PEGMA)为大分子引发剂进行ε-己内酯的酶催化开环聚合, 合成出嵌段共聚物, 然后将其转化成大分子引发剂型单体(Macroinimer), 最后通过原子转移自由基聚合(ATRP)制备出一种新型结构的嵌段型支化聚合物.  相似文献   

8.
有机硫化物用于自由基活性/可控聚合   总被引:5,自引:0,他引:5  
华道本  白如科 《化学通报》2003,66(3):162-168
综述了有机硫化物用于自由基活性聚合的研究进展,对其机理和活性特征进行了简要的讨论。有机硫化物用于自由基活性聚合的研究工作可以追溯到上个世纪80年代,N,N-二乙基二硫代氨基甲酸酯用作光引发一转移-终止剂(Iniferter),其聚合具有一定的活性特征,但分子量分布较宽,以二硫代羰酸酯和三硫代碳酸酯为链转移剂的可逆加成裂解链转移(RAFT)自由基聚合的发现,在活性自由基聚合领域是一个重要突破,用二硫代羰酸和三硫代碳酸酯作转移剂,在60Co γ-射线辐照下实现了St,AA,MA和MMA等单体的活性自由基聚合,是硫化物用于自由基活性聚合的又一新的进展。  相似文献   

9.
介绍了一种新的活性自由基聚合-单电子转移活性自由基聚合(SET-LRP)。SET-LRP的机理是基于Cu(I)在某些溶剂中的歧化反应和Cu(0)通过外层电子转移(OSET)使引发剂R-X生成自由基离子[R-X].-,自由基离子通过异裂生成自由基R.,从而引发单体进行聚合。讨论了引发剂、催化剂、溶剂和配体对SET-LRP的影响。通过与原子转移自由基聚合(ATRP)的对比,表明用于ATRP的引发剂也能广泛应用于SET-LRP,而用于SET-LRP的配体必须是能使络合物高度不稳定、能够使Cu(I)迅速发生歧化反应的配体;通过比较还显示出SET-LRP巨大的优越性:单体适应范围广、反应速率快、反应条件简单、催化剂容易脱除、反应产物没有颜色变化。总之,SET-LRP将有其广阔的应用前景。  相似文献   

10.
原子转移自由基聚合(ATRP)作为一种有效的"活性"/可控聚合可对聚合物进行分子设计,制备结构和相对分子质量可控的各类聚合物,具有潜在而广泛的研究价值。本文综述了ATRP的研究进展,特别是对传统ATRP催化引发体系、RATRP催化引发体系、AGET ATRP催化引发体系、SR&NI ATRP催化引发体系、ICAR ATRP催化引发体系、ARGET ATRP催化引发体系、杂化或双金属催化体系等的催化引发机理进行了详细的介绍。并综述了ATRP聚合中各种实施方法如本体聚合法、溶液聚合法、悬浮聚合法、乳液聚合法等的研究现状。  相似文献   

11.
综述了活性/可控自由基聚合中的可逆加成-断裂链转移(RAFT)自由基聚合研究进展;总结了RAFT试剂、RAFT聚合反应条件、RAFT聚合物及其结构形貌的最新研究进展;指出RAFT自由基聚合反应已被作为重要方法之一用于合成具有特定分子结构的聚合物.  相似文献   

12.
原子转移自由基聚合(ATRP)应用于乳液聚合体系的主要挑战在于如何同时保证乳液的稳定性和聚合反应的可控性。本文主要对乳液ATRP体系中影响聚合反应可控性和乳液稳定性的各种因素、乳液ATRP的机理和乳液ATRP的应用等方面进行了综述。表面活性剂亲水亲油性及其亲水亲油基团的化学性质、催化剂/配体在油/水两相之间的分配行为、引发剂的溶解性、反应温度以及各组分的浓度是影响反应可控性和乳液稳定性的主要因素。各组分在油/水两相中的分配行为使得乳液ATRP的机理比传统乳液聚合更加复杂。乳液原子转移自由基聚合结合了活性自由基聚合和乳液聚合的优点,在理论研究和工业生产上具有很大的应用前景。  相似文献   

13.
As a kind of living free radical polymerizations, reversible addition-fragmentation chain transfer (RAFT) has been proved to be an important technique nowadays as it is applicable to a wide range of monomers at a wide range of temperature below 100oC. In …  相似文献   

14.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成。首先合成大分子链转移剂,得到分子量可控、多分散性系数(PDI)较小(<1.30)的均聚物。用末端带有双硫酯基因的PSt,PBMA和PBA为链转移剂,加入第二单体聚合得到分子量可控、且PDI较小的两嵌段聚合物。嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基,达到较好的控制聚合效果。  相似文献   

15.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成 .首先合成大分子链转移剂 ,得到分子量可控、多分散性系数较小的均聚物PMMA、PBMA、PEMA、PEA、PBA、PMA、PSt,多分散性系数一般小于 1 30 .在相同的条件下 ,甲基丙烯酸酯类的聚合速度最快 ,苯乙烯其次 ,丙烯酸酯类最慢 .用末端带有双硫酯基团的PSt、PBMA、PBA为链转移剂 ,加入多种第二单体聚合得到实测分子量与理论分子量接近 ,且多分散性系数较小的两嵌段聚合物 .在链转移剂和引发剂的比例为 3∶1~ 6∶1的范围内 ,聚苯乙烯同样可以作为第一嵌段得到和其它酯类单体的两嵌段聚合物 .1 H NMR方法证明了聚合物的末端带有双硫酯基团 .嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基 ,达到较好的控制聚合效果  相似文献   

16.
Reverse iodine transfer polymerization (RITP) is a new controlled radical polymerization technique based on the use of molecular iodine I2 as control agent. This paper aims at presenting the basics of RITP and the strategy that we have followed for the development of this process in the past three years, from the validation in homogeneous solution polymerization up to recent results in heterogeneous aqueous polymerization processes. Typical examples of RITP of butyl acrylate in emulsion and RITP of styrene in miniemulsion are discussed.  相似文献   

17.
可逆加成-断裂链转移(reversible addition-fragmentation chain transfer,RAFT)聚合是一种有效的可控/活性自由基聚合方法,在功能型高分子的制备中有广泛的应用,RAFT聚合的关键就在于选择合适的RAFT链转移剂。基于环保无害的要求,水溶性RAFT链转移剂的制备就至关重要。本文介绍了RAFT聚合的机理,综述了水溶性RAFT链转移剂的制备及应用进展,探讨出RAFT链转移剂水溶性的作用机理,一方面是极性基团的作用,另一方面是离子键氢键等的作用,这对水溶性RAFT链转移剂的制备有一定的启发。大分子RAFT链转移剂分子中常含有亲水基团和疏水基团,具有一定的分散作用,在水相条件下不仅可以通过扩链反应制备窄分子量分布的嵌段共聚物,还可以制备出微纳米凝胶。  相似文献   

18.
Living radical polymerizations of diisopropyl fumarate (DiPF) are carried out to synthesize poly(diisopropyl fumarate) (PDiPF) as a rigid poly(substituted methylene) and its block copolymers combined with a flexible polyacrylate segment. Reversible addition‐fragmentation chain transfer (RAFT) polymerization is suitable to obtain a high‐molecular‐weight PDiPF with well‐controlled molecular weight, molecular weight distribution, and chain‐end structures, while organotellurium‐mediated living radical polymerization (TERP) and reversible chain transfer catalyzed polymerization (RTCP) give PDiPF with controlled chain structures under limited polymerization conditions. In contrast, controlled polymerization for the production of high‐molecular‐weight and well‐defined PDiPF is not achieved by atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP). The block copolymers consisting of rigid poly(substituted methylene) and flexible polyacrylate segments are synthesized by the RAFT polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2136–2147  相似文献   

19.
The reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in alcohol/water mixture mediated with the poly(N‐isopropylacrylamide) trithiocarbonate macro‐RAFT agent (PNIPAM‐TTC) is studied and compared with the general RAFT dispersion polymerization in the presence of a small molecular RAFT agent. Both the homogeneous/quasi‐homogeneous polymerization before particle nucleation and the heterogeneous polymerization after particle nucleation are involved in the PNIPAM‐TTC‐mediated RAFT polymerization, and the two‐stage increase in the molecular weight (Mn) and nanoparticle size of the synthesized block copolymer is found. In the initial homogeneous/quasi‐homogeneous polymerization, the Mn and nanoparticle size slowly increase with monomer conversion, whereas the Mn and particle size quickly increase in the subsequent heterogeneous RAFT polymerization, which is much different from those in the general RAFT dispersion polymerization. Besides, the PNIPAM‐TTC‐mediated RAFT polymerization runs much faster than the general RAFT dispersion polymerization. This study is anticipated to be helpful to understand the polymer chain extension through RAFT polymerization under dispersion conditions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
One-step synthesis of the triblock copolymers was carried out by reversible addition–fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) and ring-opening polymerization (ROP) of β-butyrolactone (BL) or ?-caprolactone (CL) using a novel difunctional macro-RAFT agent. For this purpose, primarily PEG-Br (polyethylene glycol bromine) was obtained by using 3-bromopropanoyl chloride and PEGs (polyethylene glycols) with different molecular weights. Then, macro-RAFT agent was synthesized by the reaction of potassium ethyl xanthogenate and PEG-Br. By using macro-RAFT agent, poly(MMA-b-EG-b-BL), and poly(MMA-b-EG-b-CL) triblock copolymers were synthesized by changing some polymerization conditions such as monomer/initiator concentration, polymerization time. The effect of the reaction conditions on the polydispersity and molecular weights were also investigated. The block lengths of the triblock copolymers were calculated by using 1H-nuclear magnetic resonance (1H-NMR) spectra. It was observed that the block length could be altered by varying the monomer and initiator concentrations. The characterization of the products were achieved using 1H-NMR, Fourier-transform infrared spectroscopy (FTIR), gel-permeation chromatography (GPC), thermogravimetric analysis (TGA), and fractional precipitation (γ) techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号