首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The quality of dairy farming wastewater in different regions is particular and different. In Southern China, the Chemical Oxygen Demand (CODCr) and colourity of effluent from conventional dairy farming wastewater treatment processes are similar. Catalytic ozonation is a very promising technical method. In this paper, the Mn-Fe-Ce/γ-Al2O3 catalyst was prepared via the optimized preparation method of impregnation roasting using γ-Al2O3 as the carrier, and this catalyst was used in the ozonation of actual dairy farming wastewater from treatment facilities. The performance of the Mn-Fe-Ce/γ-Al2O3 catalyst on dairy farming wastewater was investigated using a simulated dynamic test. The effects of the reaction time, pH and catalyst dosage on CODCr and the colourity removal ratio were investigated. The results show that the optimum treatment conditions were a reaction time of 20 min, pH 9, and catalyst dosage of 15 g/L. The CODCr removal ratio reached 48.9% and the colourity was 95% under the optimum conditions. BOD5/CODCr increased from 0.21 to 0.54 after catalytic ozonation, indicating that the biodegradability of wastewater was significantly improved. This research provides a new method and theoretical guidance for dairy farming wastewater treatment.  相似文献   

2.
A CuO/Al2O3 catalyst was prepared using the impregnation method. The catalytic activity of CuO/Al2O3 for the ozonation of acid red B (ARB) in aqueous solution was studied, the chemical oxygen demand (COD) removal rate was an indicator for catalytic activity evaluation. The effects of initial ARB concentration, solution pH, and different oxidative degradation systems on oxidative degradation of ARB solution were studied. The CuO/Al2O3 catalyst was characterized using X‐ray diffractometry (XRD), N2 adsorption desorption test, X‐ray photoelectron spectroscopy (XPS), and zero‐point charge (pHzpc). The results show that copper species on the carrier were in the form of CuO and highly dispersed on the carrier. CuO can increase the alkalinity of the Al2O3 surface, and the CuO/Al2O3 catalyst facilitates the decomposition of O3 into ·OH, which was beneficial for the catalytic O3 oxidation degradation reaction. With the increase of the initial concentration of simulated wastewater, the CuO/Al2O3 catalytic reaction still has a high COD removal rate. Alkaline solution was of benefit to catalyze the degradation of ARB solution. When the ARB solution pH = 8.93, the degradation reaction was carried out for 40 min, the COD removal rate reached 83.2%. The degradation reaction was dominated by the hydroxyl radical (·OH) reaction.  相似文献   

3.
Cuprous oxide (Cu2O) nanoparticles supported on Al2O3 prepared using two different methods (hereafter referred to as catalyst I and II, respectively) were characterized by XRD and TEM. The catalytic activities of catalyst I and II during the treatment of industrial wastewater were then investigated. Specifically, the progress of the catalytic oxidation of industrial wastewater was observed by monitoring the time-dependent change in the chemical oxygen demand (COD) of industrial wastewater when the catalysts were applied. The results indicated that the catalytic activity of catalyst II was greater than that of catalyst I. Furthermore, under optimal conditions the COD removal efficiency was 94.59%. Finally, the mechanism by which the oxidative degradation of the industrial wastewater occurred could be explained based on a hydroxyl radical mechanism.  相似文献   

4.
采用涂覆法制备了CoAl2O4/蜂窝陶瓷催化剂。利用X射线衍射、N2吸附-脱附和透射电镜等方法对所制备的催化剂进行了表征,并分析了其催化臭氧化降解对苯二酚的效能。结果表明,CoAl2O4/蜂窝陶瓷的晶相属于典型的尖晶石结构,具有较大的比表面积、孔容和孔径,分别达到77 m2·g-1、0.001 7 cm3·g-1和3.9 nm。CoAl2O4/蜂窝陶瓷催化臭氧化对苯二酚的去除率高达81.2%,COD去除率可达47.7%。在叔丁醇存在的条件下,对苯二酚的去除率显著下降,说明CoAl2O4/蜂窝陶瓷催化臭氧化遵循羟基自由基机理。  相似文献   

5.
采用涂覆法制备了CoAl_2O_4/蜂窝陶瓷催化剂。利用X射线衍射、N_2吸附-脱附和透射电镜等方法对所制备的催化剂进行了表征,并分析了其催化臭氧化降解对苯二酚的效能。结果表明,CoAl_2O_4/蜂窝陶瓷的晶相属于典型的尖晶石结构,具有较大的比表面积、孔容和孔径,分别达到77 m~2·g~(-1)、0.001 7 cm~3·g~(-1)和3.9 nm。CoAl_2O_4/蜂窝陶瓷催化臭氧化对苯二酚的去除率高达81.2%,COD去除率可达47.7%。在叔丁醇存在的条件下,对苯二酚的去除率显著下降,说明CoAl_2O_4/蜂窝陶瓷催化臭氧化遵循羟基自由基机理。  相似文献   

6.
Iron–manganese silicate (IMS) was synthesized by chemical coprecipitation and used as a catalyst for ozonating acrylic acid (AA) in semicontinuous flow mode. The Fe-O-Mn bond, Fe-Si, and Mn-Si binary oxide were formed in IMS on the basis of the results of XRD, FTIR, and XPS analysis. The removal efficiency of AA was highest in the IMS catalytic ozonation processes (98.9% in 15 min) compared with ozonation alone (62.7%), iron silicate (IS) catalytic ozonation (95.6%), and manganese silicate catalytic ozonation (94.8%). Meanwhile, the removal efficiencies of total organic carbon (TOC) were also improved in the IMS catalytic ozonation processes. The IMS showed high stability and ozone utilization. Additionally, H2O2 was formed in the process of IMS catalytic ozonation. Electron paramagnetic resonance (EPR) analysis and radical scavenger experiments confirmed that hydroxyl radicals (•OH) were the dominant oxidants. Cl, HCO3, PO43−, Ca2+, and Mg2+ in aqueous solution could adversely affect AA degradation. In the IMS catalytic ozonation of AA, the surface hydroxyl groups and Lewis acid sites played an important role.  相似文献   

7.
Present study deals with the treatment of coking wastewater (CWW) using Fenton oxidation process for the degradation of pollutants containing chemical oxygen demand (COD), phenol and cyanide. The experiments were performed in batch mode to study the effect of operating parameters like initial pH (pHi), temperature (T), oxidant H2O2 amount, catalyst mass loading (Cw) and treatment time (tR). The response surface methodology (RSM) gave optimum value of pH, H2O2, Cw and tR as 3, 0.3 M, 1.85 g/L (0.0266 M) and 1.52 h. At this optimum operating condition maximum 84.66% COD, 88.46% phenol and 79.34% cyanide reduction were achieved from initial value of COD (CODi) = 2810.0 mg/L, phenoli = 283.0 mg/L and cyanidei = 18.88 mg/L. Results reflect that Fenton oxidation is an effective process for the reduction of pollutants present in CWW. The CWW treated by Fenton oxidation having average value COD = 590.0 mg/L, phenol = 39.49 mg/L and cyanide = 5.2 mg/L was further treated by adsorption process as second stage treatment, and these values were reached to COD = 199.0 mg/L, phenol = 0.0 mg/L and cyanide = 2.36 mg/L. The response surface methodology (RSM) was used for the designing and optimization of the experiments. Analysis of variance (ANOVA) suggested the high regression coefficient R2 = 0.999 and 0.993 for COD and phenol removal respectively. The two stage treated CWW can be recycled and reused in same industry for various purpose.  相似文献   

8.
《Comptes Rendus Chimie》2016,19(5):639-645
Tebuconazole, a pesticide that presents risks for ecosystems, groundwater and human health, was degraded on a gold electrode as the catalyst in 0.05 M NaHCO3 using cyclic voltammetry (CV). First, tebuconazole was characterized on the gold electrode using CV and square wave voltammetry (SWV). The gold electrode, being highly sensitive, provided linear relationships (currents vs. concentrations) in the range: (0.076–0.76 μmol dm–3). Based on the CV measurements, the investigated process is irreversible and diffusion-controlled. The observed catalytic role of the Au electrode in the oxidation of tebuconazole and the data obtained from CV and SWV provided the experimental conditions for the degradation of tebuconazole. The degradation was performed by continuous cycling followed by gas chromatography–mass spectroscopy (GC–MS) analysis. This enabled the catalytic elimination of tebuconazole for 60 min, which promoted the use of a gold electrode as the catalyst for the degradation of environmental pollutants. The scheme of the possible mechanism of tebuconazole degradation is given.  相似文献   

9.
In this work, the electro-catalytic oxidation of phenol was studied using the aluminum oxide supported onto activated carbon (Al2O3/AC). The later was successfully prepared by impregnating aluminum particles in the activated carbon (AC) using heat treatment. Al2O3/AC was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The electro-catalytic performance of the Al2O3/AC for phenol oxidation was studied using cyclic voltammetry (CV), chronoamperometry, linear sweep voltammetry polarization, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) in 0.1 mol L?1 Na2SO4. It has been shown that the proposed catalyst exhibits remarkably an electro-catalytic performance toward phenol oxidation. Moreover, the oxidation peak currents are linearly dependent on the concentration of phenol in the wide ranges from 1.0 × 10?3 mol L?1 to 1.0 × 10?4 mol L?1 and 8.0 × 10?5 mol L?1 to 1.0 × 10?6 mol L?1 with a detection limit of 1.51 × 10?7 mol L?1 (signal (S) to noise (N) ratio, S/N = 3) and response time of 3 min. The possible interferences were evaluated in 1.0 × 10?5 mol L?1 of phenol. The proposed catalyst also indicated suitable repeatability and stability. Moreover, the proposed Al2O3/AC–CPE has been successfully applied for the phenol analysis in natural waters and olive oil samples with good recoveries.  相似文献   

10.
This work reports the synthesis of various carbon (Vulcan XC-72 R) supported metal oxide nanostructures, such as Mn2O3, Co3O4 and Mn2O3−Co3O4 as heterogeneous Fenton-like catalysts for the degradation of organic dye pollutants, namely Rhodamine B (RB) and Congo Red (CR) in wastewater. The activity results showed that the bimetallic Mn2O3−Co3O4/C catalyst exhibits much higher activity than the monometallic Mn2O3/C and Co3O4/C catalysts for the degradation of both RB and CR pollutants, due to the synergistic properties induced by the Mn−Co and/or Mn (Co)−support interactions. The degradation efficiency of RB and CR was considerably increased with an increase of reaction temperature from 25 to 45°C. Importantly, the bimetallic Mn2O3−Co3O4/C catalyst could maintain its catalytic activity up to five successive cycles, revealing its catalytic durability for wastewater purification. The structure–activity correlations demonstrated a probable mechanism for the degradation of organic dye pollutants in wastewater, involving •OH radical as well as Mn2+/Mn3+ or Co2+/Co3+ redox couple of the Mn2O3−Co3O4/C catalyst.  相似文献   

11.
Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83–90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm?3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm?3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.  相似文献   

12.
《Comptes Rendus Chimie》2015,18(3):250-260
CuO–ZnO–Al2O3 catalysts were synthesized by two methods, sol–gel and co-precipitation syntheses. Al2O3 was then substituted with other supports, such as ZrO2, CeO2 and CeO2–ZrO2 in order to have a better understanding of the support's effect. These catalysts containing 30 wt% of Cu were then tested for CO2 hydrogenation into methanol. The effect of reaction temperature and GHSV on the catalytic behaviour was also investigated. The best results were obtained with a 30 CuO–ZnO–ZrO2 catalyst synthesized by co-precipitation and calcined at 400 °C. This catalyst presents a good CO2 conversion rate (23%) with 33% of methanol selectivity, leading to a methanol productivity of 331 gMeOH.kgcata−1·h−1 at 280 °C under 50 bar and a GHSV of 10,000 h−1.  相似文献   

13.
The application of advanced oxidation processes (AOPs) based on sulfate radicals for degrading persistent organic pollutants faces challenges due to the inefficient activation of peroxydisulfate (PDS) oxidant. Herein, a composite CoFe2O4/MoS2-xOy (CFM) catalyst consisting of CoFe2O4 nanoparticles uniformly dispersed on the nanosheets of oxygen-incorporated MoS2 (MoS2-xOy) with flower-like morphology are fabricated through a facile two-step hydrothermal method, which results in the enhanced activation of PDS and a highly efficient degradation of phenolic pollutants. The oxygen-doping in MoS2-xOy leads to unsaturated sulfur and active sites on the surface of MoS2 for accelerating the rate limiting step of FeIII/FeII reduction cycle in PDS-CFM reaction. Aiming at the refractory organic pollutants in actual coking wastewater, CFM co-catalyst is introduced into a hydrogel made up of polyvinyl alcohol (PVA) and coal-tar pitch oxides (PO) to construct a multifunctional CFM@PO/PVA hydrogel. Upon hybrid CFM@PO/PVA, the coupling of the enhanced AOP with solar-driven interfacial vapor generation (SIVG) technology contributes to the degradation efficiency, the removal rate of phenol in solution and the total organic carbon in coking wastewater can reach 98 % and 91 %, respectively. The integration of heterogeneous AOPs with SIVG system provides a feasible strategy for the eco-friendly efficient purification of industrial wastewater.  相似文献   

14.
Al2O3催化剂结构对催化臭氧化活性的影响   总被引:6,自引:0,他引:6  
以Al2O3为催化剂催化臭氧化处理邻苯二甲酸二甲酯. 通过XRD、比表面积、孔结构、FTIR和活性评价等方法对催化剂的物化性质及催化活性进行了研究, 考察了焙烧温度、成型粒径对催化剂活性的影响. 结果表明, Al2O3催化剂对臭氧化降解邻苯二甲酸二甲酯具有很高的催化活性, 反应120 min后, 总有机碳(TOC)的去除率从单独臭氧氧化的23.9%提高到55.1%; 焙烧温度对催化剂的活性具有很大的影响, 600 ℃催化剂催化活性最高; 随着焙烧温度的升高, Al2O3晶型经历了从γ-Al2O3θ-Al2O3α-Al2O3的转变, 催化剂的比表面积、焙烧得到的孔容逐渐变小, 晶体粒径变大, 表面•OH数量减少, 催化活性下降. Al2O3成型粒径的减小, 提高了催化剂的外比表面积, 减小了内部传质扩散的影响, 从而提高了催化活性.  相似文献   

15.
A two-stage continuous screw-kiln reactor was investigated for the production of synthesis gas (syngas) from the pyrolysis of biomass in the form of waste wood and subsequent catalytic steam reforming of the pyrolysis oils and gases. Four nickel based catalysts; NiO/Al2O3, NiO/CeO2/Al2O3, NiO/SiO2 (prepared by an incipient wetness method) and another NiO/SiO2 (prepared by a sol–gel method), were synthesized and used in the catalytic steam reforming process. Pyrolysis of the biomass at a rapid heating rate of approximately 40 °C/s, was carried out at a pyrolysis temperature of 500 °C and the second stage reforming of the evolved pyrolysis gases was carried out with a catalytic bed kept at a temperature of 760 °C. Gases were analysed using gas chromatography while the fresh and reacted catalyst was analysed by scanning electron microscopy, thermogravimetric analysis, transmission electron microscopy with energy dispersive X-ray and X-ray photoelectron spectroscopy. The reactor design was shown to be effective for the pyrolysis and catalytic steam reforming of biomass with a maximum syngas yield of 54.0 wt.% produced when the sol–gel prepared NiO/SiO2 catalyst was used, which had the highest surface area of 765 m2 g−1. The maximum H2 production of 44.4 vol.% was obtained when the NiO/Al2O3 catalyst was used.  相似文献   

16.
This research investigated the efficiency of nanosized ZnO in the catalytic ozonation of 4-chloro-2-nitrophenol and determined the effect of pH on heterogeneous catalytic ozonation. Use of ozone with ZnO catalyst leads to conversion of 98.7% of 4-chloro-2-nitrophenol during 5 min. In addition, it was found that in ZnO catalytic ozonation, the degradation efficiency of 4-chloro-2-nitrophenol was higher at low pH conditions (pH 3.0) than high pH (pH 7–9). This result was not in accordance with ozonation alone, following which higher pH had positive effect on the degradation of 4-chloro-2-nitrophenol. During the catalytic ozonation of 4-chloro-2-nitrophenol, an increase of nitrate ions in water sample solution was observed. At pH = 3, the concentration of nitrate formed during nano-ZnO catalytic ozonation was 7.08 mg L−1 and the amount of total organic carbon was 54.9% after 30 min.  相似文献   

17.
The heterogeneous catalytic oxidation of Chromotrope 2B (C2B) dye with H2O2 and the aluminum oxide hydroxide (AlOOH) modified with ammonia complexes of CuII, CoII, NiII, and CrIII (AlOOH/[Mn+(amm)m]) as catalysts were studied. The AlOOH/[CuII(amm)4] is the most efficient catalyst and therefore it was chosen as the potential catalyst for the oxidative degradation of C2B in an aqueous solution. The AlOOH/[CuII(amm)4] was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM), techniques. The rate of reaction was dependent on the type of the metal complex supported on the AlOOH, initial concentration of the dye and H2O2, catalyst dose, pH, the concentration of NaCl, and temperature. The catalytic activity of the AlOOH/[Mn+(amm)m] according to the kind of metal ion decreased in the order: CuII > CoII > CrIII > NiII. Other catalysts consisting of the AlOOH supported with CuII complexed with ethylenediamine, ethanolamine, 1,3 propanediamine, and 1,4 butanediamine, (AlOOH/[CuII(amine)m]), were also investigated. The activity of the (AlOOH/[CuII(amine)m]) as catalyst according to the type of ligand followed the order: 1,4 butanediamine > 1,3 propanediamine > ethanolamine > ethylenediamine > ammonia. The reaction rate increased with increasing the catalyst dose, concentration of H2O2, C2B, and NaCl, pH, and temperature. Since the reusability results for the AlOOH/[CuII(amm)4] revealed good stability over seven cycles, it can thus be considered a promising and cost-effective catalyst for the removal of harmful dyes from wastewater.  相似文献   

18.
Mn–TiO2 catalysts were utilized as an ozonation catalyst for the first time to study the simultaneous catalytic ozonation of Hg0 and NO at low flue gas temperatures. BET, SEM–EDS, XRD, XPS, H2-TPR, NO x -TPD and Hg0-TPD were used to characterize the catalysts. The Mn–TiO2 catalyst, in which the molar content of metal Mn was 60%, exhibited the best catalytic activities of Hg0 and NO oxidation, compared with other Mn–TiO2 catalysts. It was found that within the range of experiment, the catalytic ozonation efficiency of Hg0 and NO was higher than that of ozonation or catalytic oxidation. The results also showed that the presence of NO gas inhibited the catalytic ozonation of elemental mercury, and the inhibition was enhanced with the NO inlet concentration, while few elemental mercury molecules did promote the catalytic ozonation of NO. The addition of H2O vapor promoted the catalytic ozonation of Hg0 and NO. In addition, 0.6Mn–TiO2 catalyst demonstrated a good TOS and cyclic stability. The catalytic ozonation of NO and Hg0 on Mn–TiO2 catalyst likely followed the Langmuir–Hinshelwood mechanism, where the hydroxyl radicals reacted with adjacently adsorbed NO molecules and elemental mercury on catalyst surface.  相似文献   

19.
The synthesis of trifluoroacetaldehyde by vapor-phase oxidation of 2,2,2-trifluoroethanol using supported vanadium catalysts was studied. Significant differences were observed in the reaction outcomes resulting from different types of catalysts. The ZrO2- and Al2O3-supported catalyst demonstrated both high catalytic activity and selectivity. The addition of co-catalysts such as MoO3 or SnO2 improved catalytic performance (Selectivity: up to 91%; S.T.Y.: >200 g L−1 h−1). The experimental results on catalyst lifetime showed a marked decrease in the activity of the Al2O3-supported catalyst within tens of hours, while the ZrO2-supported catalyst showed little, if any, performance alterations for 2000 h.  相似文献   

20.
The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号