首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc oxide nanoparticles (ZnO NPs) represent a novel type of metal oxide nanoparticles enabling a new horizon for biomedical applications spanning from diagnosis to treatment. ZnO NPs are extensively used in commercial products such as sunscreens and daily-care products. Apart from that, ZnO NPs are used in food packaging and ointments and as an antimicrobial and antifungal agent. They are extensively used for many biomedical applications noticeably in pharmaceutics and theranostics. Its exceptional optical, electrical, and physiochemical properties, notably its incredible surface chemistry, make ZnO NPs a reliable option for bioimaging, biosensors, antimicrobial action, and drug and gene delivery. The present review covers findings and developments in ZnO NPs research in relation to its application and toxicity mechanism. A special emphasis has been given to the neurotoxic potential of the ZnO NPs and glial cell toxicity. Various factors contributing to the toxic potential of ZnO NPs and cell signaling pathways concerning its toxicity are also discussed. Available data point toward the risk of uncontrollable use of zinc nanoformulation. With increasing use, ZnO NPs pose a severe threat both to the ecosystem and human beings. In a nutshell, the review outlines the current state of the art of ZnO NPs.  相似文献   

2.
Nanoparticles (NPs) are considered as an important environmental risk factor for cognitive impairments and neurodegenerative disorders. Recent evidences have reported a glutamatergic system response against air-borne NPs. Zinc and copper oxides (ZnO and CuO) NPs are the most common metal oxide NPs in industries. The effects of these NPs on hippocampal voltage-dependent ion channels and spatial cognition have been previously studied. However, there is a lack of evidence regarding the effects of ZnO and CuO NPs on glutamatergic synapse neurotransmission in central nervous system. In the present study, the effects of ZnO and CuO NPs on glutamate (Glu) release and uptake have been investigated in isolated nerve terminals (synaptosomes). Our findings have shown that, even in high doses of ZnO and CuO NPs, no significant effect on Glu release is observed. However, a decrease has been observed in uptake of Glu. Hence, ZnO and CuO NPs can be considered as hazardous agents inducing neurodegenerative disorders through Glu excitotoxicity.  相似文献   

3.
In this study, dual doped Zinc oxide nanoparticles consisted of silver and magnesium were prepared by Salvadora persica extract. Powder X-ray diffraction (PXRD) analysis displayed the formation of wurtzite ZnO phase nanostructures and dual doped nanoparticles. The morphological observations of scanning electron microscopy (SEM) confirmed the hexagonal morphology of prepared nanoparticles. The Raman scattering of this product exhibited the first and second orders of polar and non-polar modes that are the characteristic bonds of a wurtzite structure. The toxicity effects of synthesized un-doped, as well as Ag and Mg dual doped ZnO NPs on breast cancer cell (MDA-MB-231) and breast normal cell (MCF-10A) lines, were investigated by the means of MTT test. Accordingly, in comparison to the case of silver and magnesium doped zinc oxide nanoparticles, the un-doped ZnO NPs caused a more toxic impact on MDA-MB-231cells. There was a lack of any significant toxicity effects from un-doped and Ag and Mg dual doped ZnO nanoparticles on the experimented normal cell line (MCF-10A). The gathered results were indicative of a lower toxicity effect in doped nanoparticles when compared to un-doped nanoparticles and therefore, it can be stated that the doping of silver and magnesium metals produces more reliable zinc oxide nanoparticles.  相似文献   

4.
Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50–60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.  相似文献   

5.
A simple and green protocol, developed utilizing an efficient, heterogeneous and recyclable catalyst, i.e. zinc oxide nanoparticles (ZnO NPs)-mediated synthesis of N-arylhomophthalimides and benzannelated isoquinolinones, is reported. The structures of the desired products were characterized by FTIR, 1H NMR, 13C NMR, and HRMS techniques. The ZnO NPs exhibited excellent catalytic activity and the proposed methodology is capable of providing the desired products in good yield and purity.  相似文献   

6.
Khan SB  Faisal M  Rahman MM  Jamal A 《Talanta》2011,85(2):943-949
Well-crystalline ZnO nanoparticles (NPs) were synthesized in large-quantity via simple hydrothermal process using the aqueous mixtures of zinc chloride and ammonium hydroxide. The detailed structural properties were examined using X-ray diffraction pattern (XRD) and field emission scanning electron microscope (FESEM) which revealed that the synthesized NPs are well-crystalline and possessing wurtzite hexagonal phase. The NPs are almost spherical shape with the average diameters of ∼50 ± 10 nm. The quality and composition of the synthesized NPs were obtained using Fourier transform infrared (FTIR) and electron dispersed spectroscopy (EDS) which confirmed that the obtained NPs are pure ZnO and made with almost 1:1 stoichiometry of zinc and oxygen, respectively. The optical properties of ZnO NPs were investigated by UV-vis absorption spectroscopy. Synthesized ZnO NPs were extensively applied as a photocatalyst for the degradation of acridine orange (AO) and as a chemi-sensor for the electrochemical sensing of acetone in liquid phase. Almost complete degradation of AO has taken place after 80 min of irradiation time. The fabricated acetone sensor based on ZnO NPs exhibits good sensitivity (∼0.14065 μA cm−2 mM−1) with lower detection limit (0.068 ± 0.01 mM) in short response time (10 s).  相似文献   

7.
The toxicity of ZnO nanoparticles (NPs) has been widely investigated because of their extensive use in consumer products. The mechanism of the toxicity of ZnO NPs to algae is unclear, however, and it is difficult to differentiate between particle-induced toxicity and the effect of dissolved Zn2+. In the work discussed in this paper we investigated particle-induced toxicity and the effects of dissolved Zn2+ by using the chiral perturbation approach with dichlorprop (DCPP) as chiral perturbation factor. The results indicated that intracellular zinc is important in the toxicity of ZnO NPs, and that ZnO NPs cause oxidative damage. According to dose–response curves for DCPP and the combination of ZnO NPs with (R)-DCPP or (S)-DCPP, the toxicity of DCPP was too low to perturb the toxicity of ZnO NPs, so DCPP was suitable for use as chiral perturbation factor. The different glutathione (GSH) content of algal cells exposed to (R)-DCPP or (S)-DCPP correlated well with different production of reactive oxygen species (ROS) after exposure to the two enantiomers. Treatment of algae with ZnO NPs and (R)-DCPP resulted in reduced levels of GSH and the glutathione/oxidized glutathione (GSH/GSSG) ratio in the cells compared with the control. Treatment of algae with ZnO NPs and (S)-DCPP, however, resulted in no significant changes in GSH and GSH/GSSG. Moreover, trends of variation of GSH and GSH/GSSG were different when algae were treated with ZnSO4·7H2O and the two enantiomers. Overall, the chiral perturbation approach revealed that NPs aggravated generation of ROS and that released Zn2+ and NPs both contribute to the toxicity of ZnO NPs.
Figure
explore causes of the toxicity of ZnO NPs by chiral perturbation approach  相似文献   

8.
The main purpose of this study was to investigate the effect of zinc oxide (ZnO) nanoparticles on the morphological, mechanical, thermal, and rheological properties of PLA/PP blend. In this regard, nanocomposites containing 1, 3, and 5 wt% of ZnO nanoparticles were prepared by melt mixing. In addition, three different mixing procedures were adopted to study their effects on the microstructure of nanocomposites. The rheological behaviors demonstrated a higher elasticity and less compatibility for two phases in the case of nanocomposites containing nanoparticles in harmony with the morphological observations. Accordingly, it was correlated to the elasticity originating from the interphase, anticipated coalescence of dispersed particles as a result of degradation of PLA chains triggered by ZnO nanoparticles (ZnO‐NPs) and also agglomeration of ZnO‐NPs depending on the content of nanoparticles and chosen mixing procedure. It was also found that mixing method puts a remarkable influence on the microstructure and rheological behavior of nanocomposites. Results of mechanical characterizations and thermogravimetric analysis (TGA) also confirmed the degradation induced by ZnO nanoparticles.  相似文献   

9.
In the present work, Zinc Oxide (ZnO) nanoparticles (NPs) were synthesized by the chemical co-precipitation method using Zinc Chloride as the initial chemical, while Nickel and Cobalt chloride as dopants. Phase identification of metal (Ni, Co) doped Zinc Oxide nanoparticles (NPs) was observed using x-ray diffraction (XRD). The small lattice distortion or phase changes appeared due to shifting of diffraction angles peaks towards larger angle in ZnO are corresponded to metal (Ni, Co) dopant. The average crystallite size appears to decrement in NP size from 7.67 nm to 6.52 nm and 5.35 nm to 5.17 nm with increasing 5 % to 80 % of metal (Ni, Co) dopant respectively. The optical characteristics, including the absorption spectra of the prepared sample were observed through UV–Vis spectroscopy, Meanwhile SEM confirmed the observation of composition change in specimen with metal (Ni, Co) dopant concentration. The bandgap value was also found decrement 5.23 eV to 5.05 eV with increment of metal (Ni, Co) dopant concentration. The functional groups were measured by Fourier transformation infrared spectroscopy (FTIR). FTIR peaks found the metal (Ni, Co) doped ZnO with the vibration mode of (Zn2+ –O2?) ions due to the increment of dopant concentrations. Furthermore, electrical results show the ohmic behavior of prepared samples. These findings indicate the possibility of tuning optical, structural and electrical properties of metal (Ni, Co) doped ZnO with various dopant concentrations of Nickel and will have great potential to find application in optoelectronic devices.  相似文献   

10.
A facile biosynthesis route was followed to prepare zinc oxide nanoparticles (ZnO NPs) using Euphorbia milii (E. milii) leaf constituents. The SEM images exhibited presence of spherical ZnO NPs and the corresponding TEM images disclosed monodisperse nature of the ZnO NPs with diameter ranges between 12 and 20 nm. The Brunauer–Emmett–Teller (BET) analysis revealed that the ZnO NPs have specific surface area of 20.46 m2/g with pore diameter of 2 nm–10 nm and pore volume of 0.908 cm3/g. The EDAX spectrum exemplified the existence of Zn and O elements and non-appearance of impurities that confirmed pristine nature of the ZnO NPs. The XRD pattern indicated crystalline peaks corresponding to hexagonal wurtzite structured ZnO with an average crystallite size of 16.11 nm. The FTIR spectrum displayed strong absorption bands at 512 and 534 cm?1 related to ZnO. The photocatalytic action of ZnO NPs exhibited noteworthy degradation of methylene blue dye under natural sunlight illumination. The maximum degradation efficiency achieved was 98.17% at an illumination period of 50 min. The reusability study proved considerable photostability of the ZnO NPs during photocatalytic experiments. These findings suggest that the E. milii leaf constituents can be utilized as suitable biological source to synthesis ZnO NPs for photocatalytic applications.  相似文献   

11.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   

12.
Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs) were successfully synthesized by the Sol-gel method coated with polyethylene glycol as a stabilizing and capping agent. The UV–Vis spectrophotometer analysis was done to analyze the optical property of the nanoparticles. XRD pattern showed the hexagonal structure of ZnO nanoparticles and the reduction in the intensity of the peaks of Ag-ZnO NPs indicates the incorporation of Ag+ ions in the ZnO lattices. The surface structural properties of the NPs were confirmed by Field Emission Scanning Electron Microscope (FE-SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). The elemental composition of nanoparticles was confirmed by EDAX and XRF-Spectroscopy. The functional group of ZnO and Ag nanoparticles were determined by FT-IR spectroscopy. The photocatalytic activity of Ag-ZnO NPs was studied against ponceau and the maximum degradation percentage was observed to be 89% at 140 min. Further, Ag-ZnO NPs unveiled high potent antibacterial activity against the selected bacterial pathogens and it also rendered significant anticancer activity in UVB-induced HaCaT cells. Consequently, the fluorescent microscopic analysis confirmed the increasing Reactive Oxygen Species (ROS) generation and Mitochondrial Membrane Potential (MMP) loss in the HaCaT cells that leads to the apoptosis induction. Hence, the selected combination of nanoparticles has proven to exhibit higher photocatalytic, antibacterial and anticancer activity. In the near future, it could be an efficient tool for eradicating the dye pollution from wastewater and also preferably be utilized in the cosmetics and pharmaceutical industries to prevent skin cancer.  相似文献   

13.
《中国化学会会志》2017,64(7):813-821
Zinc oxide nanoparticles (ZnO NPs ) were prepared by a simple, convenient, and cost‐effective wet chemical method using the biopolymer starch. The prepared ZnO NPs were characterized by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), energy‐dispersive X‐ray (EDX ), Fourier transform infrared (FT‐IR ), and UV ‐visible spectroscopic techniques. The average crystallite size calculated from XRD data using the Debye–Scherer equation was found to be 15 nm. The electrochemical behavior of caffeine (CAF ) was studied using a glassy carbon electrode (GCE ) modified with zinc oxide nanoparticles by cyclic voltammetry (CV ) and differential pulse voltammetry (DPV ). Compared to unmodified GCE , ZnO NPs‐ modified GCE (ZnO NPs MGCE ) exhibited excellent electrocatalytic activity towards CAF oxidation, which was evident from the increase in the peak current and decrease in the peak potential. Electrochemical impedance study suggested that the charge‐transfer capacity of GCE was significantly enhanced by ZnO NPs . The linear response of the peak current on the concentrations of CAF was in the range 2–100 μM . The detection limit was found to be 0.038 μM. The proposed sensor was successfully employed for the determination of CAF in commercial beverage samples.  相似文献   

14.
We report the effect of dispersion of zinc oxide (ZnO) nanoparticles (NPs) on the conductivity, birefringence and fluorescence properties of commercially available room temperature nematic liquid crystal (LC) with the variation of dopant concentration. Significant changes have been observed in transition enthalpy, DC conductivity, photoluminescence and birefringence values of the LC material by the addition of ZnO NPs. While the inclusion of NPs enhances the electrical conductivity of the composite system, it results in a reduction in the birefringence value, which can be attributed to a decrease in the order parameter of the system due to the perturbed geometry of the LC. This also results in the increase in threshold voltage value, which has been speculated as due to the piezoelectric nature of the ZnO NPs. The analysis of the fluorescence spectrum indicates that ZnO NPs enhance the intensity in the LC phase along with a small blue shift.  相似文献   

15.
Drug sensitization with various inorganic nanoparticles (NPs) has proved to be a promising and an emergent concept in the field of nanomedicine. Rose bengal (RB), a notable photosensitizer, triggers the formation of reactive oxygen species under green‐light irradiation, and consequently, it induces cytotoxicity and cell death. In the present study, the effect of photoinduced dynamics of RB upon complexation with semiconductor zinc oxide NPs is explored. To accomplish this, we successfully synthesized nanohybrids of RB with ZnO NPs with a particle size of 24 nm and optically characterized them. The uniform size and integrity of the particles were confirmed by high‐resolution transmission electron microscopy. UV/Vis absorption and steady‐state fluorescence studies reveal the formation of the nanohybrids. ultrafast picosecond‐resolved fluorescence studies of RB–ZnO nanohybrids demonstrate an efficient electron transfer from the photoexcited drug to the semiconductor NPs. Picosecond‐resolved Förster resonance energy transfer from ZnO NPs to RB unravel the proximity of the drug to the semiconductor at the molecular level. The photoinduced ROS formation was monitored using a dichlorofluorescin oxidation assay, which is a conventional oxidative stress indicator. It is observed that the ROS generation under green light illumination is greater at low concentrations of RB–ZnO nanohybrids compared with free RB. Substantial photodynamic activity of the nanohybrids in bacterial and fungal cell lines validated the in vitro toxicity results. Furthermore, the cytotoxic effect of the nanohybrids in HeLa cells, which was monitored by MTT assay, is also noteworthy.  相似文献   

16.
ABSTRACT

We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.  相似文献   

17.
Nanomaterial is a rapidly growing area that is used to create a variety of new materials and nanotechnology applications from medical, pharmaceuticals, chemical, mechanical, electronics and several environmental industries including physical, chemical and biological nanoparticles are very important in our daily life. Nanoparticles with leaf extract from the healthy plant are important in the area of research using biosynthesis methods. Because of it’s used as an environmentally ecofriendly, other than traditional physical and chemical strategies. In particular, biologically synthesized nanoparticles have become a key branch of nanotechnology. The present work presents a synthesis of zinc oxide nanoparticles using an extract from the Argemone leaf Mexicana. Biosynthetic nanoparticles are characterized by X-ray diffraction (XRD), Ultraviolet visible (UV-vis) spectroscopy analysis, a Fourier Transform Infrared Spectroscopy analysis (FTIR) and a scanning electron microcopy (SEM), X-ray analysis with dispersive energy (EDAX). XRD is used to examine the crystalline size of zinc oxide nanoparticles. The FTIR test consists in providing evidence of the presence of targeted teams. UV is used for optical properties and calculates the energy of the bandwidth slot. The scanning microscope emission reveals the morphology of the surface and the energy dispersive X-ray analysis confirms the basic composition of zinc oxide nanoparticles. It is found that zinc nanoparticles are capable of achieving high anti-fungal efficacy and therefore have a high potential antimicrobial activity of ZnO NPs, like antibacterial and high antioxidant. Zinc Oxide nanoparticles from the Argemone Mexicana leaf extract have several antimicrobial applications, such as medical specialty, cosmetics, food, biotechnology, nano medicine and drug delivery system. ZnO nanoparticles are important because they provide many practical applications in industry. The most important use of nanoparticles of ZnO would be strong antibacterial and antioxidant activity with a simple and efficient biosynthesis method may be used for future work applications.  相似文献   

18.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   

19.
In this study, the copper sulfide nanoparticles (CuS‐NPs) and the zinc oxide/zinc hydroxide nanoparticles ((ZnO/Zn(OH)2‐NPs) were synthesized by a simple and low‐cost method, and the synthesized nanoparticles were characterized and identified by UV–Vis, field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The antimicrobial activity of the CuS‐NPs and the ZnO/Zn(OH)2‐NPs were examined by broth dilution to determine the minimal inhibitory concentration (MIC) of antibacterial agent required to inhibit the growth of a pathogen and the minimum bactericidal concentration (MBC) required to kill a particular bacterium. Agar disc diffusion method was used to determine the zone of inhibition. The nanoparticles demonstrated potent antibacterial activity against Klebsiella pneumonia (ATCC 1827), Acinetobacter baumannii (ATCC 150504), Escherichia coli (ATCC 33218) and Staphylococcus aureus (ATCC 25293). Antifungal activity against Aspergillus oryzae (PTCC 5164) was also obtained. The data obtained from antimicrobial activities by broth dilution and agar disc diffusion methods exhibited the CuS‐NPs were more effective than the ZnO/Zn(OH)2‐NPs. A good correlation was observed between the data obtained by both methods.  相似文献   

20.
The use of titanium oxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) in sunscreen formulations has increased considerably, and might pose a serious health hazard worldwide. A thorough investigation into the toxicity induced by such components is highly necessary. In this study, the effects of TiO2 and ZnO NPs on HaCaT cells were tested in the presence and absence of emulsifiers (cyclopentasiloxane, jojoba ester, and lecithin). Cell viability results revealed that the toxicity of NPs was highly dose dependent and influenced by the emulsifier type. The emulsifiers themselves are minimally toxic. However, when used in combination with TiO2 and ZnO, they were highly toxic to HaCaT cells. Transmission electron microscopy revealed that the cells showed least permeability to NPs dispersed in lecithin compared to other emulsifiers. In conclusion, the toxicity of NPs may be highly dependent on the emulsifier type and be varied. In particular, lecithin can be used as a potential alternative emulsifier in sunscreens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号