首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
The interaction of nanoparticles with biological systems can provide useful information about their therapeutic applications. The aluminum nanoparticles (Al2O3 NPs) were synthesized by laser ablation technique and well-characterized by different methods. Fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking studies were employed to evaluate the effect of Al2O3 NPs on the protein structure. Growth inhibitory and apoptotic effects of the Al2O3 NPs against K562 cancer cells and lymphocyte cells were assessed using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), flow cytometry, and real time polymerase chain reaction (PCR) assays. The antipathogenic activity of Al2O3 NPs against a diverse range of Gram-negative and Gram-positive pathogens was explored through a disk diffusion method. The characterization techniques determined that the Al2O3 NPs were successfully synthesized in the nanoscales. Intrinsic, 1-anilino-8-naphthalenesulfonate (ANS) and acrylamide fluorescence spectroscopy studies disclosed that Al2O3 NPs can partially change the tertiary structure of human serum albumin (HSA), whereas CD spectroscopy investigation depicted that the secondary structure of HSA remained intact. Molecular docking investigation also manifest that the Al2O3 nano-clusters preferably bind to electrostatic residues. Al2O3 NPs exhibited promising and selective anticancer features through reactive oxygen species (ROS) production, apoptosis induction, and elevation of Bax/Bcl-2 mRNA ratio. Furthermore, the Al2O3 NP showed a remarkable antibacterial activity against both Gram-negative and Gram-positive pathogens. In conclusion, it may be suggested that the synthesized Al2O3 NPs can be integrated in the development of anticancer and antipathogenic agents.  相似文献   

2.
A simple and convenient one step room temperature method is described for the synthesis of bovine serum albumin (BSA) capped gold and silver nanoparticles. BSA reduces silver ions to silver nanoparticles but does not directly reduce gold ions to gold nanoparticles at room temperature and varying pH conditions. However, when silver and gold ions are simultaneously added to BSA, silver ions get reduced to metallic silver first and these in turn reduce gold ions to gold nanoparticles through a galvanic exchange reaction. The so synthesized silver and gold nanoparticles are easily water dispersible and can withstand addition of salt even at high concentrations. It is shown that the capped protein retains its secondary structure and the helicity to a large extent on the nanoparticles surface and that the protein capping makes the nanoparticles cytocompatible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号