首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Three low-cost adsorbents (purified raw attapulgite (A-ATP), high-temperature-calcined attapulgite (T-ATP), and hydrothermal loading of MgO (MgO-ATP)) were prepared as adsorbents for the removal of Cd(II) and Pb(II). By evaluating the effect of the initial solution pH, contact time, initial solution concentration, temperature and coexistence of metal ions on Cd(II) and Pb(II) adsorption, the experimental results showed that MgO-ATP was successfully prepared by hydrothermal reaction and calcination as well as appearing to be a promising excellent adsorbent. At an initial pH of 5.0, A-ATP, T-ATP and MgO-ATP reached maximum adsorption amounts of 43.5, 53.9 and 127.6 mg/g for Pb(II) and 10.9, 11.2, and 25.3 mg/g for Cd(II) at 298 K, respectively. The Cd(II) adsorption on A-ATP was fitted by the Freundlich model, while the adsorption of Pb(II) and Cd(II) on T-ATP and MgO-ATP as well as Pb(II) adsorption on A-ATP agreed with the Langmuir model. All kinetic experimental data favored pseudo second-order model. The calculated thermodynamic parameters suggested that Pb(II) adsorption onto MgO-ATP was spontaneous and exothermic. When considering foreign metal ions, the three adsorbents all presented preferential adsorption for Pb (II). Chemical adsorption had a high contribution to the removal of Cd(II) and Pb(II) by modified attapulgite. In summary, the adsorption was greatly enhanced by the hydrothermal loading of MgO. It aimed to provide insights into the MgO-ATP, which could be able to efficiently remove Cd(II) and Pb(II) and serve as an economic and promising adsorbent for heavy metal-contaminated environmental remediation.  相似文献   

2.
In the present study, we attempted to synthesize a novel sorbent from the starch modified montmorillonite for the removal of Pb(II), Cd(II), and Ni(II) ions from aqueous solutions. Structure and properties of the adsorbent were characterized by Fourier-transformed infrared(FT-IR) spectroscopy, X-ray diffraction (XRD), and Field emission scanning electron microscopic (FE-SEM) techniques. Batch experiments were confirmed through the effect of different conditions including pH, contact time, initial metal concentration and adsorbent dose. Specifically, the optimum value of adsorbent dose was achieved as 20 g/l for the removal of almost metal ions. The adsorption data was fitted with the optimum pH value as 5 for all experiments. The contact time at which the uptake of maximum metal adsorption was observed within 45 min for Pb(II), 90 min for Cd(II), and 60 min for Ni(II). In addition, it was revealed in our study that the equilibrium data obeyed the Langmuir model, and the adsorption kinetic followed a pseudo second-order rate model. Obtained results were noticeable for a modified phyllosilicate adsorbent, and with such a simple and low-cost modification for montmorillonite, the potential of this material as an economical and effective adsorbent for the removal of metal ions from aqueous solution was considerably elevated.  相似文献   

3.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

4.
We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe3O4-pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg?L?1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are <4.5% (for five replicates at 50 μg?L?1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg?g?1 for both ions which is higher than the conventional Fe3O4-pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples.
Figure
Schematic illustration of synthesized magnetic MOF-pyridine nanocomposite  相似文献   

5.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

6.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

7.
Multi-walled carbon nanotubes (MWCNTs) were used successfully for the removal of heavy metals from aqueous solution. Characterization techniques showed the carbon as nanotubes with an average diameter between 40 and 60 nm and a specific surface area of 61.5 m2 g?1. The effect of carbon nanotubes mass, contact time, metal ions concentration, solution pH, and ionic strength on the adsorption of Cu(II), Pb(II), Cd(II) and Zn(II) by MWCNTs were studied and optimized. The adsorption of the heavy metals from aqueous solution by MWCNTs was studied kinetically using different kinetic models. A pseudo-second order model and the Elovich model were found to be in good agreement with the experimental data. The mechanism of adsorption was studied by the intra-particle diffusion model, and the results showed that intra-particle diffusion was not the slowest of the rate processes that determined the overall order. This model also revealed that the interaction of the metal ions with the MWCNTs surface might have been the most significant rate process. There was a competition among the metal ions for binding of the active sites present on the MWCNTs surface with affinity in the following order: Cu(II) > Zn(II) > Pb(II) > Cd(II).  相似文献   

8.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized by glutaric dihydrazide (GDH) and characterized with FT-IR technique. This new sorbent was used for enrichment and preconcentration of Co(II), Cd(II), Pb(II), and Pd(II) ions. The adsorption was achieved quantitatively on MWCNTs at pH 4.0, and then the retained metal ions on the adsorbent were eluted with 1.5 mol L?1 HNO3. The effects of analytical parameters including pH of the solution, eluent type, sample volume, and matrix ions were investigated for optimization of the presented procedure. The adsorption capacity of the adsorbent at optimum conditions was found to be 33.6, 29.2, 22.1, and 36.0 mg g?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The LOD values of the method were 0.16, 0.19, 0.17, and 0.12 ng mL?1 (3Sb, n = 10) for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The RSDs values of the method were 0.75, 0.85, 1.16, and 1.30 ng mL?1 for Co(II), Cd(II), Pb(II), and Pd(II), respectively. The method was applied for the determination of analytes in soil, well water, and wastewater samples with satisfactory results.  相似文献   

9.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

10.
In the present study, adsorption of Ni(II) and Pb(II) from aqueous solution was investigated using activated carbon synthesized with industrial wastewater sludge. The synthesized adsorbent was analyzed using nitrogen adsorption–desorption and Fourier transfer infrared (FTIR) techniques. Batch adsorption mode was used to evaluate the effect of solution pH, contact time, adsorbent dose, initial metal ion concentration, and temperature on the adsorption capacity of the synthesized adsorbent. The kinetic data were analyzed using different kinetic models. The pseudo-second-order equation gave the best fit to the experimental data for both metal ions. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The results showed that the data obtained for the Ni(II) and Pb(II) adsorption are in good agreement with the Langmuir model. The Langmuir mono-layer maximum adsorption capacities for Ni(II) and Pb(II) ions were estimated to be 74.06 and 88.76 mg g?1 at 25°C, respectively. In addition, the thermodynamic studies proved that the adsorption process of both metals could be considered endothermic.  相似文献   

11.
A novel UV-VIS spectrophotometric method was developed in this study by using solid phase extraction procedure for the simultaneous preconcentration, separation and determination of trace levels of Pb (II), Cd (II) and Zn (II) ions in various water samples by using Amberlite N,N-bis(salicylidene)cyclohexanediamine (SCHD) resin. This study presents the results of experimental procedures carried out like the adsorption of analytes to the resin, influences of some analytical parameters that effect the recovery such as pH, sample volume, sample flow rate, eluent type and concentration, eluent volume, eluent flow rate and the effects of alkaline metals, earth alkaline metals and some other transition metals. The analytes in the samples with the adjusted pH range of 4–7 were adsorbed on XAD-4-SCHD resin and eluted by using 1.0 mol L?1 nitric acid. The amounts of ions were determined by using UV-VIS spectrometer. The limits of detection were 0.03, 0.07 and 0.05 µg mL?1 for Pb (II), Cd (II) and Zn (II), respectively. The accuracy of the method was assured by the analysis of the certified standard water sample NW-TMDA-70.2 and the observed recoveries were above 93%. Different environmental water samples that contain trace amounts of Pb (II), Cd (II) and Zn (II) were analysed by using the method developed in this study. Same samples were also analysed by ICP-MS for comparison and almost the similar results were observed. The method developed in this study was successfully applied to the various environmental water samples to determine the trace levels of Pb (II), Cd (II) and Zn (II) ions.  相似文献   

12.
In this study, the preparation of magnetic Fe3O4/ZIF-8 (MFZ) and its adsorption properties for Cd(II) from water were investigated. Various characterizations demonstrate that the as-prepared MFZ has well magnetic-separation performance and thermal stability. In batch adsorption tests, the effects of pH, initial concentration, and adsorbent dosage were evaluated. According to the findings, when the pH is 7 and the dosage is 150 mg/L, the adsorption capacity for a 40 mg/L Cd(II) solution reaches 102.3 mg/g in 180 min. The Cd(II) adsorption processes was found to correspond to pseudo-first-order kinetics and Langmuir model according to the adsorption kinetics and isotherms. The Langmuir model predicted a maximal saturation adsorption capacity of 160.26 mg/g at 298 K. Thermodynamic analysis revealed that the Cd(II) adsorption is an endothermic, spontaneous process. Ion exchange, coordination reaction, and electrostatic interaction are all involved in Cd(II) adsorption by MFZ. The optimum conditions for Cd(II) adsorption were proposed and confirmed in accordance with the results of the response surface optimization experiments. Furthermore, regeneration tests demonstrate the great repeated regeneration ability of MFZ. According to the anticipated production cost, treating wastewater with a Cd(II) concentration of 40 mg/L would cost roughly US$ 8.35/m3. MFZ showed good potential for Cd(II) removal from water.  相似文献   

13.
The adsorption capacities of commercial and Brazilian natural clays were evaluated to test their applications in wastewater control. We investigated the process of sorption of manganese(II) and cadmium(II) present in synthetic aqueous effluents, by calculating the adsorption isotherms at 298 K using batch experiments. The influence of temperature and pH on the adsorption process was also studied. Adsorption of metals was best described by a Langmuir isotherm, with values of Q 0 parameter, which is related to the sorption capacity, corresponding to 6.3 mg g− 1 for K-10/Cd(II), 4.8 mg g− 1 for K-10/Mn(II), 11.2 mg g− 1 for NT-25/Cd(II) and 6.0 mg g− 1 for NT-25/Mn(II). We observed two distinct adsorption mechanisms that may influence adsorption. At the first 5 min of interaction, a cation exchange mechanism that takes place at exchange sites located on (001) basal planes is predominant. This process is inhibited by low pH values. After this first and fast step, a second sorption mechanism can be related to formation of inner-sphere surface complexes, which is formed at edges of the clay. The rate constants and the initial sorption rates correlate positively with temperature in all studied systems, denoting the predominance of a physisorption process. The addition of complexing agents that are incorporated within the K10 structure, enhance metal uptake by the adsorbent. The results have shown that both Cd(II) and Mn(II) were totally retained from a 50 mg L− 1 solution when K10 grafted with ammonium pyrrolidinedithiocarbamate (APDC) was used as adsorbent.  相似文献   

14.
《中国化学快报》2021,32(10):3231-3236
A magnesium doped ferrihydrite-humic acid coprecipitation (Mg-doped Fh-HA) was synthesized by coprecipitation method. The removal of heavy metals such as Pb(II) and Cd(II) was assessed. The isotherms and kinetic studies indicated that the Mg-doped Fh-HA exhibited a remarkable Pb(II) and Cd(II) sorption capacity (maximum 120.43 mg/g and 27.7 mg/g, respectively.) in aqueous solution. The sorption of Pb(II) and Cd(II) onto best fitted pseudo-second-order kinetic equation and Langmuir model. The adsorption mechanism of Mg-doped Fh-HA on Pb(II) and Cd(II) involves surface adsorption, surface complexation and surface functional groups (such as carboxyl group, hydroxyl group). In addition, ion-exchange and precipitation cannot be ignored. The Mg-doped Fh-HA is a low-cost and high-performance adsorption material and has a wide range of application prospects.  相似文献   

15.
The present study reports the competitive adsorptive removal of cadmium (Cd(II)) and zinc (Zn(II)) ions from binary systems using rice husk ash (RHA), a waste obtained from the rice husk-fired furnaces, as an adsorbent. The initial pH (pH0) affects significantly the capacity of RHA for adsorbing the metallic ions in the aqueous solution. The pH0  6.0 is found to be the optimum for the removal of Cd(II) and Zn(II) ions by RHA. The single ion equilibrium adsorption from the binary solution is better represented by the non-competitive Redlich–Peterson (R–P) and the Freundlich models than by Langmuir model in the initial metal concentration range of 10–100 mg/l. The adsorption of Zn(II) ion is more than that of Cd(II) ion, and this trend is in agreement with the single-component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined effect of Cd(II) and Zn(II) ions on RHA is generally found to be antagonistic. Non-modified Langmuir, modified Langmuir, extended-Langmuir, extended-Freundlich, Sheindorf–Rebuhn–Sheintuch (SRS), non-modified R–P and modified R–P adsorption models were tested to find the most appropriate competitive adsorption isotherm for the binary adsorption of Cd(II) and Zn(II) ions onto RHA by minimizing the Marquardt's percent standard deviation (MPSD) error function. The extended-Freundlich model satisfactorily represents the adsorption equilibrium data of Cd(II) and Zn(II) ions onto RHA.  相似文献   

16.
Silica gel modified with 3-aminopropyltrimethoxysilane was anchored with nicotinaldehyde to prepare a new chelating surface (or matrix). It was synthesized and characterized by elemental analysis, cross-polarization magic-angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance infrared Fourier-transform spectroscopy, nitrogen adsorption–desorption isotherm, Brunauer–Emmett–Teller surface area, and Barrett–Joyner–Halenda pore sizes. The new surface exhibits good chemical and thermal stability as determined by thermogravimetry curves. This new organic–inorganic material was used for preconcentration of Hg(II), Pb(II), Zn(II), and Cd(II) from water prior to their determination by inductively coupled plasma atomic emission spectrometry. The optimum pH for quantitative sorption of these metal ions is in the range of 6–8, and the sorption capacity is in range of 486–1,449 μmol/g. By batch method, 95 % extraction takes ≤30 min. All the metals could be desorbed with a solution of hydrochloric acid (6 N) without loss of the expensive ligand. Solutions of the metal ions were prepared by dissolution of the nitrate solution.  相似文献   

17.
In this study, a novel organic–inorganic hybrid adsorbent for single‐step detection and removal of Pb(II) ions based on dithizone (DZ) anchored on mesoporous SBA‐15 was fabricated. The designed solid optical sensor revealed rapid colorimetric responses and high selectivity. Central composite design (CCD) combined with desirability function (DF) was applied to evaluate the interactive effects and optimization of important variables such as pH value, mesoporous SBA‐15 dosage, contact time and initial concentration of Pb(II) ions and optimum conditions for each of the factors were obtained 6.0, 25 mg, 30 min and 20 μg ml− 1, respectively. This adsorbent or solid optical chemo sensor exhibited a linear range of 1.0 to 100.0 μg ml−1 of Pb(II) ion concentration with a detection limit of 0.07 μg ml−1. This adsorbent was applied to determine and remove the Pb(II) in spiked samples. Various isotherm models such as Langmuir, Freundlich, Temkin and Dubinin–Radushkevich were studied for fitting the experimental equilibrium data. Langmuir model was chosen as an efficient model. Various kinetic models such as pseudo‐first, second order intraparticle, diffusion models were studied for analysis of experimental adsorption data and the pseudo second order model was chosen as an efficient model.  相似文献   

18.
The present work proposes the use of Agave sisalana (sisal fiber) as an natural adsorbent for ions Pb(II) and Cd(II) biosorption from natural waters. The flame atomic absorption spectrometry was used for quantitative determination and study of the ions Pb(II) and Cd(II) adsorption on the solid phase. The Fourier transform infrared spectroscopy (FT IR) was used to investigate the sisal structure and the specific BET surface area was analyzed. The biosorption potential of sisal as biosorbent for the removal of the ions Pb(II) and Cd(II) from aqueous solution was investigate considering the followings parameters: pH, biomass amount and contact time. Langmuir and Freundlich isotherms were used to evaluate adsorption behavior of the ions on this solid phase. The results showed that sisal has a surface area to adsorption of 0.0233 m2 g− 1, and the OH and CO functional groups are the main involved in the biosorption. The best interpretation for the experimental data was given by Freundlich isotherm that proposes a monolayer sorption with a heterogeneous energetic distribution of active sites, accompanied by interactions between sorbed molecules. The maximum monolayer biosorption capacity was found to be 1.85 mg g− 1 for Cd (II) and 1.34 mg g− 1 for Pb (II) at pH 7 and 296 K. This phase solid can be used for biosorption of cadmium and lead in polluted natural waters.  相似文献   

19.
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.  相似文献   

20.
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号