首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
采用具有白磷钙矿结构的磷酸盐作为目标产物,通过高温固相法制备了发光颜色可调的 Ca8MgBi(PO4)7∶Ce3+,Tb3+荧光粉。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱等表征手段对其物相组成、微观形貌及发光性能进行了详细研究。结果表明:掺杂少量的 Ce3+、Tb3+并没有改变 Ca8MgBi(PO4)7基质的晶体结构。荧光光谱和荧光寿命曲线确定了 Ce3+-Tb3+之间存在能量传递,其能量传递机制为四极-四极相互作用,能量传递效率可达 81%。固定 Ce3+浓度而逐渐增加 Tb3+的掺杂量时,系列Ca8MgBi(PO4)7∶0.08Ce3+,yTb3+荧光粉的发光颜色可由蓝光调至绿光,从而实现发光颜色的可控化。  相似文献   

2.
采用高温固相法合成了系列Ce~(3+)和Ce~(3+)/Tb~(3+)激活的具有磷灰石结构荧光粉Ba_(10)(PO_4)_6F_2。用X射线衍射(XRD)、扫描电镜(SEM)、激发和发射(PLE和PL)光谱对样品进行了表征分析。研究结果表明:所合成的荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)具有氟磷灰石结构,样品微观呈现不规则形貌。荧光粉Ba10-x(PO4)6F2∶x Ce~(3+)的相对发射强度随着x增加而增强,当x=0.09时,荧光强度达到最大。荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的激发光谱为240~330 nm的宽带,发射光谱呈现出Ce~(3+)的5d→4f跃迁紫外光(335和358 nm)发射和Tb~(3+)的4f→4f跃迁绿光(542 nm)发射。光谱特性表明,发光过程中存在Ce~(3+)→Tb~(3+)能量传递,能量传递效率可以达到60%。计算Ce~(3+)和Tb~(3+)的临界距离为0.79 nm,能量传递机理是偶极-偶极交互作用。此外,详细论述了Ce~(3+)和Tb~(3+)之间的能量传递和发光的过程。通过调节Tb~(3+)的掺杂浓度,对荧光粉发光色坐标与Tb~(3+)的掺杂浓度之间的关系也进行了研究,随着Tb~(3+)的掺杂量从0增加0.52,荧光粉Ba_(10)(PO_4)_6F_2∶Ce~(3+),Tb~(3+)的发射光谱色坐标可以从(0.149 4,0.045 1)蓝色区变化到(0.280 1,0.585 3)绿色区。  相似文献   

3.
Ce3+,Tb3+,Eu3+共掺杂Sr2MgSi2O7体系的白色发光和能量传递机理   总被引:1,自引:0,他引:1  
通过正交试验,采用高温固相法制备了Sr2-x-y-zMgSi2O7∶xCe3+,yTb3+,zEu3+系列样品.使用X射线衍射仪和荧光光谱仪表征了样品的物相和发光性质,并讨论了Ce3+-Tb3+-Eu3+共掺杂Sr2MgSi2O7体系中的能量传递过程.实验结果表明,在327 nm波长激发下,所合成荧光粉的发射峰主要位于387 nm(蓝紫)、542nm(绿)和611 nm(红)处;分别以387,542和611 nm为监控波长,所得激发光谱显示荧光粉在327 nm处有最好的激发.在327 nm光激发下,系列样品发光进入白光区.最优化的荧光粉为Sr1.91MgSi2O7∶0.01Ce3+,0.05Tb3+,0.03Eu3+,其色坐标为(0.337,0.313),是一种潜在的发光二极管(LED)用白色荧光粉.  相似文献   

4.
采用高温固相法制备了Sr_3Y(BO_3)_3:xTm~(3+),yDy~(3+)荧光粉,并通过XRD、SEM和荧光光谱仪对样品的物相、微观形貌、发光性能、能量传递机制和CIE色坐标进行了分析。结果表明:Sr_3Y(BO_3)_3:xTm~(3+)荧光粉在监测波长为359 nm时发射蓝光,Tm~(3+)的浓度淬灭点为x=0.08;在Sr_3Y(BO_3)_3:0.08Tm~(3+),yDy~(3+)荧光粉中,随着Dy~(3+)掺杂浓度的增加,Tm~(3+)的发光强度降低而Dy~(3+)发光强度却先增加后降低,Dy~(3+)的浓度淬灭点为y=0.1;通过改变Dy~(3+)掺杂浓度或改变激发光的波长,均可实现发射光的颜色可调;在Tm~(3+)-Dy~(3+)离子之间存在能量传递。当Dy~(3+)掺杂浓度(物质的量分数)为0.15时能量传递效率达75.14%,能量传递机制为电偶极-电偶极相互作用。  相似文献   

5.
采用水热法制备出Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca_9Y(PO4)7基质中引入Ce~(3+),Tb~(3+)离子对发光性能的影响规律。研究发现因Tb~(3+)离子自身能量交叉驰豫的存在,使得单掺Tb~(3+)时,通过调节Tb~(3+)离子的浓度可以实现对发光颜色的控制。同时研究了Ce~(3+)-Tb~(3+)之间的能量传递为电多极相互作用的偶极-四极机制,Ce~(3+)-Tb~(3+)之间最大的能量传递效率为55.6%。Ca_9Y(PO4)7∶Ce~(3+),Tb~(3+)的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

6.
高温固相法合成Ba0.11Sr2.89-2x-2yCexTbyNax+yAlO4F荧光粉,并用X射线衍射(XRD)、荧光光谱(PL)测定分析了其晶体结构及光谱性质。结果表明:当Tb3+掺杂量x=0.07时,发光强度最高,发射主峰位于545 nm,并进一步研究了Ce3+,Tb3+共掺的样品中Ce3+→Tb3+能量传递过程。其次,测试由近紫外LED(~380 nm)和三基色荧光粉(Ba0.11Sr2.89Ce0.01Tb0.07Na0.08AlO4F,BAM and Sr2Si5N8:Eu2+)封装的白光LED光电性能,其色品坐标(x=0.3223,y=0.3408),色温5500 K,显色指数为86.26。因此,Ba0.11Sr2.89-2x-2yCexTbyNax+yAlO4F可作为一种潜在的适用于近紫外LED激发的荧光材料。  相似文献   

7.
利用微乳液方法,合成了铈、铽共掺杂的氟镁钾纳米粒子,研究了体系中Ce3+→Tb3+的发光特性以及它们之间的相互作用,结果表明KMgF3∶Ce3+,Tb3+纳米粒子中存在Ce3+→Tb3+的能量传递过程,即Ce3+可以将吸收的能量直接传递给Tb3+离子,使得Tb3+的绿色发光强度大为增加。  相似文献   

8.
采用高温固相法合成Sr2-mMg1-nSi2O7∶mTb3+,nLi+(m=0.03~0.50,n=m)系列荧光粉。使用X射线衍射仪和荧光光谱仪对样品的物相和发光性质进行了表征。在377 nm紫外光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于490 nm,542 nm,590 nm和613 nm处,分别对应于Tb3+的5D4→7FJ(J=6,5,4,3)跃迁发射。调节Tb3+离子掺杂浓度,可实现荧光粉的发光颜色从蓝到白、黄、绿的可调发射;名义组成为Sr1.95Mg0.95Si2O7∶0.05Tb3+,0.05Li+的荧光粉在紫外光(377 nm)激发下发白光,其色坐标(0.322,0.317)接近纯白光(0.33,0.33),是一种潜在的LED用单基质白光荧光粉。  相似文献   

9.
用固相反应法合成了具有单相的Li2EuSiO4结构的Li2Sr1-x-ySiO4:xCe3+,yTb3+系列样品。荧光光谱研究表明,Li2SrSiO4:Ce3+发射很强的蓝光,最强的激发峰位于360 nm;而Li2SrSiO4:Tb3+发射很强的绿光,最强的激发激发峰位于243 nm,但在350~410 nm的激发非常微弱。在Ce3+,Tb3+共掺杂的样品Li2Sr0.99-ySiO4:0.01Ce3+,yTb3+中,观察到Ce3+对Tb3+的共振能量传递。由于Ce3+对Tb3+能量传递,Tb3+的激发光谱中出现360 nm附近的宽激发峰。控制Tb3+/Ce3+掺杂浓度比可以实现绿蓝双基色的调制。这种双基色的荧光粉有望在紫外激发的白光LED中获得应用。  相似文献   

10.
采用高温固相法合成了绿色荧光粉Ca3Y2Si3O12:Tb3+。XRD检测结果显示,荧光粉主晶相为Ca3Y2Si3O12,属单斜晶系。荧光光谱分析表明:Ca3Y2Si3O12:Tb3+硅酸盐荧光粉可以被370nm的近紫外光激发,发射绿光,主发射峰位于490nm(5D47F6),544nm(5D47F5),585nm(5D47F4)和621nm(5D47F3)。用544nm最强峰监测,得到主激发峰位于370nm的激发光谱,此光谱覆盖了300~450nm的波长范围。研究了煅烧条件、掺杂浓度及Ce3+共掺杂对荧光粉发光性能的影响:在1400℃下经二次煅烧6h得到的样品的发光性能最佳,Tb3+离子的最佳掺杂浓度为20mol%,Ce3+离子共掺杂能够提高荧光粉的发光强度,其最佳掺杂量为4mol%,说明存在Ce3+→Tb3+的能量传递。  相似文献   

11.
以强碱性阴离子交换树脂为交换介质,采用离子交换法制备了稀土Tb3+离子掺杂的ZrO2:Tb3+纳米晶.通过XRD,TG-DSC,TEM,HRTEM等手段分析了样品制备过程的物相变化及晶粒形貌,用荧光光度计研究了样品的三维荧光光谱、激发光谱和发射光谱.结果表明:前驱沉淀物经800℃焙烧处理2 h,制备出近方型形貌,颗粒分散性好、尺寸约为40 nm的四方相ZrO2:Tb3+纳米晶.当焙烧温度升高到900℃以上时样品出现了少量单斜晶相,而经800℃焙烧处理的纯Zr02是以四方相和单斜相同时存在.说明稀土Tb3+离子的掺杂对ZrO2基质的四方晶相起到稳定作用.由ZrO2:Tb3+)的等角三维荧光光谱图显示Tb3+在ZrO2基质中的最佳激发波长为290 nm:在290 nm波长光的激发下观察到纳米ZrO2中Tb3+的发射峰位于491,545,582 nm分别对应于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F4能级跃迁,以491,545nm的发射峰最强,其中经800℃焙烧处理的样品其5D4→7F6跃迁发射与5D4→7F5跃迁发射强度几乎相同,说明该法制备的纳米ZrO2:Tb3+中5D4→7F6跃迁发射增强,使Tb3+发光的蓝色成分增加了.  相似文献   

12.
采用熔融晶化法成功制备了Dy~(3+)/Tb~(3+)双掺含SrWO4晶相玻璃陶瓷,并对其光学性能进行研究。利用差示扫描量热分析仪(DSC)确定了热处理温度,利用X射线衍射(XRD)确定了玻璃基质中有SrWO_4晶粒析出,并结合透过率曲线确定最佳析晶温度和时间为710℃保温1.5 h。探讨了当Dy_2O_3的浓度为0.8%(n/n)时,Tb_4O_7浓度对玻璃陶瓷样品发光性能的影响,在Dy~(3+)/Tb~(3+)双掺玻璃陶瓷的发射光谱中表明:在350 nm激发下,544 nm处存在明显的发射峰。随着Tb_4O_7浓度增加,能量传递效率逐渐增加。当Tb_4O_7浓度达到1.9%(n/n)时,绿光发射强度达到最大值。结合Dexter能量传递理论和荧光衰减曲线,确定了Dy~(3+)到Tb~(3+)存在能量传递。  相似文献   

13.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

14.
采用柠檬酸燃烧法制备了稀土TB3 掺杂的CaLa1-xAl3O7:xTb3 发光材料的前驱粉末,在低于700℃退火处理时,得到非晶态样品,而高于800℃退火处理后为纯相的CaLa1-xAl3O7:xTb3 粉末样品.通过三维荧光光谱、激发光谱和发射光谱研究了Tb3 在CaLaAl3O7基质中的发光性能及Tb3 掺杂量、退火温度和柠檬酸与金属离子的配比等对发光强度的影响.结果显示.非晶态和晶态CaLa1-xAl3O7:xTb3 品都可发光,在240 nm波长光的激发下,CaLaAl3O7:Tb3 粉体产生Tb3 的特征发射峰,归属于5D4-7FJ(J=6,5,4,3)跃迁,主发射峰位置均在543 nm处(5D4-7F5跃迁),随着粉末逐渐成相5D4-7F5跃迁明显增强.  相似文献   

15.
采用静电纺丝技术结合高温煅烧工艺,制备了稀土铽离子掺杂的氧基磷灰石型硅酸盐[Ca2Y8(SiO4)6O2:Tb3+]荧光纳米纤维。利用XRD,FT-IR,TG-DTA,SEM,HRTEM和荧光光谱仪等分析测试手段对样品的组成、结构和性能进行了表征。结果表明:前驱体纤维经800℃煅烧4 h后,获得的Ca2Y8(SiO4)6O2:Tb3+荧光纳米纤维,属于六方晶系,P63/m空间群,其平均直径为100 nm。在245 nm的紫外光激发下,Tb3+的发射光谱由蓝光区和绿光区两部分组成,前者在382,417和438 nm处的发射峰对应于Tb3+的5D3→7FJ(J=6,5,4)跃迁;后者在489,545,590和622 nm处的发射峰对应5D4→7FJ(J=6,5,4,3)跃迁,其中以5D4→7F5(545 nm)跃迁的发射峰为最强,呈现绿光特性,Tb3+的光致发光衰减曲线符合单指数行为,其荧光寿命达2.65 ms。  相似文献   

16.
采用高温固相法合成了Mn2+单掺杂及Mn2+,Ga3+共掺杂的γ-Zn3(PO4)2。γ-Zn3(PO4)2:Mn2+的发射峰位于620 nm,而γ-Zn3(PO4)2:Mn2+,Ga3+发射光谱有两个发射峰,其中一个发射峰位于507 nm,另一个发射峰位于620 nm。507 nm的发射峰来自于处于四面体晶体场中Mn2+(CN=4)的4T1g-6A1g能级跃迁,而620 nm的发射峰来自于处于八面体晶体场中Mn2+(CN=6)的激发态4T1g-6A1g的能级跃迁。在Mn2+,Ga3+共掺杂的样品中,八面体场中Mn2+的激发光谱与四面体场中Mn2+的发射光谱有显著的光谱重叠,满足共振能量传递条件,从而发生了Mn2+(CN=4)向Mn2+(CN=6)的能量传递,对此进行了证明及讨论。此外,Mn2+离子在四面体场及八面体场中的浓度分布随着Ga3+离子的掺入量而发生变化。Ga3+离子对Mn2+在四面体场与八面体场浓度比值起到调节作用。随着Mn2+离子和Ga3+离子浓度的增加,发射光谱中绿光强度与红光强度比值也逐渐增加。最终,发射光谱中绿光强度与红光强度的相对比值是由Mn2+离子浓度、Ga3+离子浓度及Mn2+(CN=4)向Mn2+(CN=6)的能量传递3个因素决定的。  相似文献   

17.
采用熔融晶化法制备Tm~(3+)-Tb~(3+)-Eu~(3+)掺杂含Na_3Gd(PO_4)_2晶相荧光玻璃陶瓷,并对其光学性能进行了研究。利用差示扫描量热分析(DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)等测试,确定了样品的晶相结构和最佳热处理条件(740℃/3 h)。在359 nm激发下,Tm_2O_3、Tb_4O_7、Eu_2O_3掺杂浓度(物质的量分数)分别为0.2%、0.2%、0.95%时,玻璃陶瓷的色度坐标为(0.333 2,0.318 8),接近标准白光(0.333,0.333)。结合荧光光谱和荧光衰减曲线分析,证实了样品中存在Tm~(3+)→Eu~(3+)、Tb~(3+)→Eu~(3+)的能量传递。  相似文献   

18.
采用溶胶-凝胶法合成了YNbO4∶Tb^3+,Sm^3+系列荧光粉。光谱测试表明:体系中的NbO43-基团能够吸收紫外光并将能量传递给Tb^3+和Sm^3+,从而增强荧光粉的发光强度。在290 nm激发下,YNbO4∶Tb^3+,Sm^3+荧光粉的发射光谱中既出现了Tb^3+的绿光发射又出现了Sm^3+的橙光发射。通过改变Sm^3+的掺杂浓度,实现了荧光粉发射光的光色可调。  相似文献   

19.
采用高温固相法成功制备了KNaCa2(PO4)2:Tb3+绿色荧光粉,并研究了其发光性质。测量了其激发和发射光谱,样品发射峰位于418,440,492,545,586,622 nm,分别对应Tb3+的5 D3→7 F5,5 D3→7 F4,5 D4→7 F6,5 D4→7 F5,5 D4→7 F4,5 D4→7 F3能级跃迁,主发射峰位于545 nm。主激发峰位于350~390 nm之间,属于4f→4f电子跃迁吸收,与InGaN管芯匹配。确定了在KNaCa2(PO4)2基质中Tb3+浓度对其发光强度的影响及其自身浓度猝灭机制。研究了不同电荷补偿剂对KNaCa2(PO4)2:Tb3+材料发光的影响,其中Li+离子改善其发光强度最为明显。  相似文献   

20.
采用溶剂热法合成了一种单一相白色荧光粉NaY(WO4)2∶Eu3+,Tb3+,Tm3+。通过X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)及荧光光谱(PL)对制备的系列样品的物相、形貌和荧光性质进行了表征。结果表明:在荧光粉NaY(WO4)2∶x%Eu3+,4%Tb3+,1%Tm3+(x=5,10,15,20)中,随着Eu3+掺入量的增加,发光从绿光区进入白光区。同时观察到Tb3+到Eu3+的有效能量传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号