首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this study, we evaluated the extractability of three curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) from turmeric powder in several solvents using high-performance liquid chromatography (HPLC) with the diode-array detection method. These solvents include water, milk (homogenized, 2% reduced fat, low fat, fat free, soy, almond, coconut, and milkadamia), and aqueous ethanols (0%, 4%, 10%, 20%, 30%, 40%, 50%, and 100%). Ambient water was able to extract only 0.55 mg/g of curcuminoids, whereas warm water extracted more than four-fold higher amounts (2.42 mg/g). Almond, coconut, and milkadamia milk were able to extract only small amounts of curcuminoids at ambient temperatures (0.01–0.07 mg/g). The extractability of curcuminoids in these milk types did not improve, even in warm conditions (0.08–0.37 mg/g). Whereas dairy and soy milk extracted 6.76–9.75 mg/g of curcuminoids under ambient conditions, their extractability increased significantly in warm conditions by 30–100% higher (11.7–14.9 mg/g). The solubility of curcuminoids also varied remarkably in different proportions of aqueous-alcohol mixtures. With 4% ethanol, only 1.7 mg/g of curcuminoids were extracted, and the amounts improved with the increase in ethanol content up to 50% (32.2 mg/g), while 100% ethanol extracted a similar amount as 50% ethanol (34.2 mg/g). This study suggests that the extractability of curcuminoids from turmeric will be dependent on the type of diets consumed with the turmeric supplements.  相似文献   

2.
Novel turmeric rhizome extract nanoparticles (TE-NPs) were developed from fractions of dried turmeric (Curcuma longa Linn.) rhizome. Phytochemical studies, by using HPLC and TLC, of the fractions obtained from ethanol extraction and solvent–solvent extraction showed that turmeric rhizome ethanol extract (EV) and chloroform fraction (CF) were composed mainly of three curcuminoids and turmeric oil. Hexane fraction (HE) was composed mainly of turmeric oil while ethyl acetate fraction (EA) was composed mainly of three curcuminoids. The optimal TE-NPs formulation with particle size of 159.6 ± 1.7 nm and curcumin content of 357.48 ± 8.39 µM was successfully developed from 47-run D-optimal mixture–process variables experimental design. Three regression models of z-average, d50, and d90 could be developed with a reasonable accuracy of prediction (predicted r2 values were in the range of 0.9120–0.9992). An in vitro cytotoxicity study using MTT assay demonstrated that the optimal TE-NPs remarkably exhibited the higher cytotoxic effect on human hepatoma cells, HepG2, when compared with free curcumin. This study is the first to report nanoparticles prepared from turmeric rhizome extract and their cytotoxic activity to hepatic cancer cells compared with pure curcumin. These nanoparticles might serve as a potential delivery system for cancer therapy.  相似文献   

3.
Juniperus procera is a natural source of bioactive compounds with the potential of antitumor, antimicrobial, insecticidal, antifungal, and antioxidant activities. An optimization method was developed for total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) in leaf and seed extract of Juniperus procera. Organic solvents (methanol (99.8%), ethanol (99%), and acetone (99.5%)), and deionized water (DI) were used for extraction. The estimation of TPC, TFC, and TTC in plant materials was carried out using UV-spectrophotometer and HPLC with the standards gallic acid, quercetin, and tannic acid. Recovery of TPC in leaf extract ranged from 2.9 to 9.7 mg GAE/g DW, TFC from 0.9 to 5.9 mg QE/g DW, and TTC ranged from 1.5 to 4.3 mg TA/g DW while the TPC value in the seed extract ranged from 0.53 to 2.6 mg GAE/g DW, TFC from 0.5 to 1.6 mg QE/g DW, and TTC ranged from 0.5 to 1.4 mg TA/g DW. This result revealed that methanol is the best solvent for recovery of the TPC value (9.7 mg) from leaf extract in comparison to other solvents. Ethanol recorded the highest result of TFC (5.9 mg) in leaf extract among the solvents whereas acetone was the best for TTC yield recovery from leaf extract (4.3 mg). In the case of the seed extract, ethanol was the best solvent for both TPC (2.6 mg), and TFC (1.6 mg) recovery in comparison to other solvents. Total tannin content in methanol resulted in significant recovery from seed extract (1.4 mg). Separation and quantification of gallic acid, quercetin, and tannic acid in plant materials were undertaken using HPLC. Gallic acid in leaf and seed of J. procera ranged from 6.6 to 9.2, 6.5 to 7.2 µg/g DW, quercetin from 6.3 to 18.2, 0.9 to 4.2 µg/g DW, and tannic acid from 16.2 to 29.3, 6.6 to 9.3 µg/g DW, respectively. Solvents have shown a significant effect in the extraction of phenolic compounds. Moreover, phytochemicals in plant materials were identified using GC-MS and resulted in very important bioactive compounds, which include anti-inflammatory, antibacterial, and antitumor agents such as ferruginol, phenanthrene, and n-hexadecanoic acid. In conclusion, the optimal solvent for extraction depends on the part of the plant material and the compounds that are to be isolated.  相似文献   

4.
The aim of this study was to investigate the antioxidant activities of various parts (barks, buds, and leaves) of Cinnamomum cassia extracted with ethanol and supercritical fluid extraction (SFE). For the antioxidant activity comparison, IC50 values of the SFE and ethanol extracts in the DPPH scavenging assay were 0.562-10.090 mg/mL and 0.072-0.208 mg/mL, and the Trolox equivalent antioxidant capacity (TEAC) values were 6.789-58.335 mmole Trolox/g and 133.039-335.779 mmole Trolox/g, respectively. In addition, the total flavonoid contents were 0.031-1.916 g/ 100 g dry weight of materials (DW) and 2.030-3.348 g/ 100 g DW, and the total phenolic contents were 0.151-2.018 g/ 100 g DW and 6.313-9.534 g/ 100 g DW in the SFE and ethanol extracts, respectively. Based on the results, the ethanol extracts of Cinnamon barks have potential value as an antioxidant substitute and this study also provide a better technique to extract the natural antioxidant substances from C. cassia.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(11):7652-7664
Seaweeds are known as excellent sources of unique bioactive metabolites. In the present study, proton nuclear magnetic resonance (1H NMR) combined with principal component analysis (PCA) was used to distinguish the metabolic variations in Brown seaweed, Sargassum polycystum treated under different drying processes. The study also evaluated the phytochemistry, antioxidant, and antimicrobial effects of S. polycystum extracted in different solvents. Mutually under the different drying processes investigated, a total of 12 metabolites were identified from 1H NMR analysis. Freeze drying emerged as the most efficient process that preserved most of the potentially beneficial metabolites in the samples. The results of the qualitative phytochemical screening of differentially dried S. polycystum extracts revealed the presence of various secondary metabolites. The 70% ethanol extract exhibited the highest total phenolic (627 ± 50.81 mg GAE/100 g dried samples) and also displayed the highest DPPH scavenging activity (61.4 ± 0.171%) at the highest concentration (3 mg ml−1) tested. Methanol extract on the other hand contained the highest total antioxidant capacity (121.00 ± 0.003 mmol/g) followed by 70% ethanol extract (120.00 ± 0.001 mmol/g) at concentration of 1.25 mg/mL. The 70% ethanol extract also showed inhibition zone towards all bacteria samples tested compared to others solvent extracts. Based on these results, the identification of metabolites variations using PCA is considered as very useful procedure as a basis to recommend the most efficient processing (drying) method. The potential utilization of the tested Brown seaweed S. polycystum species as a source of antioxidants and antibacterial agents were also highlighted. The commercial cultivation of the species therefore, needs to be encouraged and promoted.  相似文献   

6.
In this study, wild olive fruits were evaluated for the occurrence of phenolic antioxidant components and valuable nutrients which are distributed wildly in Soon valley of Pakistan. The shade-dried fruits of wild olive were extracted using different solvents to recover phenolic antioxidants. The highest concentration of extractable antioxidant components was recovered from tested fruits using aqueous ethanol compared to other solvents used. Crude concentrated extracts (CCEs) and phenolic rich fractions (PRFs) of tested fruits using hydroxyethanol were found to contain higher amount of total phenolic compounds and total flavonoid compounds along with superior biological attributes. According to ICP-OES analysis, potassium (17.96 g/kg) was the dominant macro element among other identified twenty-five minerals. The tested wild olive fruits juice was found to contain individual natural sugars including galactose (4.92 g/100 g dry weight), sucrose (2.75 g/100 g dry weight), glucose (0.73 g/100 g dry weight); and succinic acid (8.80 mg/100 g of dry matter) as major organic acid when analyzed on HPLC. Oleic acid (47.41 %) was the major monounsaturated fatty acid in the oil extracted from tested fruits. The concentration of phenolic antioxidants and biological activities vary significantly (p < 0.05) among extracting systems used. A strong correlation was also recorded among total phenolic (TP), total flavonoids (TF) and biological attributes of tested wild olive fruits. The results of this study explored wild olive fruits as a propitious source of natural phenolic components and valuable nutrients which reveal its potential use in the development of functional food and nutra-pharmaceuticals.  相似文献   

7.
Purpose of studyDodonaea viscosa Jacq. is an ethnomedicinal plant that has been extensively used for the treatment of gout, rheumatism and pain. Current study was undertaken to mine its antioxidant, antimicrobial, cytotoxic and antidiabetic potential. Chromogenic assays were employed to establish plant’s multimode antioxidant profile whereas HPLC fingerprinting was performed to quantify polyphenols. Standard brine shrimp lethality, MTT and SRB assays proved its cytotoxicity potential.ResultsAmong all the extracts (flower, leaf, stem and root), maximum extract recovery (22% w/w), gallic acid equivalent total phenolic content (20.11 ± 0.11 ug GAE/mg DW), ascorbic acid equivalent total antioxidant capacity (22.5 ± 0.07 µg/mg DW) and total reducing power (31.1 ± 1.13 µg/mg DW) were recorded in the distilled water + acetone extract of leaf. The acetone extract of leaf showed maximum quercetin equivalent total flavonoid content (4.78 ± 0.13 µg/mg DW). HPLC-DAD analysis revealed significant amount of rutin, vanillic acid, coumaric acid, ferulic acid, gallic acid, syringic acid, cinnamic acid, gentisic acid, catechin, caffeic acid, apigenin and myricetin in the different plant parts. Maximum scavenging potential was exhibited by methanol + ethyl acetate stem extract (IC50 = 23.8 µg/ml). The highest antibacterial potential was found in flower (85.7%) and root (71.4%) extracts. The ethanol + ethyl acetate (1:1) leaf extract showed noteworthy toxicity against brine shrimps (LC50 = 95.46 µg/ml) while a notable antiproliferative activity against THP-1 (IC50 = 3.4 µg/ml) and Hep G2 (IC50 = 20 µg/ml) cell lines was shown by ethanol + ethyl acetate extracts (1:1) of stem and root, respectively. A moderate inhibition of α-amylase enzyme was observed in all parts of the plant.ConclusionThe results of the present study suggest D. viscosa as a potential source of antioxidant, anticancer and α-amylase inhibitory phytochemicals.  相似文献   

8.
The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC—direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC–MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions.  相似文献   

9.
This paper describes the antioxidant and antimicrobial activities and phenolic components of different solvent (absolute methanol, absolute ethanol, absolute acetone, 80% methanol, 80% ethanol, 80% acetone and deionized water) extracts of leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. The extract yields from leaves, flowers and bark ranged from 10.19 to 36.24, 12.97 to 48.47 and 4.22 to 8.48 g/100 g dry weight (DW), respectively. Overall, 80% methanol extract produced from the leaves exhibited significantly (P < 0.05) higher antioxidant activity, with high phenolic contents (3.63 g GAE/100 g DW), total flavonoid contents (1.19 g CE/100 g DW), inhibition of peroxidation (85.54%), DPPH scavenging capacity (IC(50) value 8.89 μg/mL) and reducing power (1.87). Similarly, this 80% methanol leaves extract also showed superior antimicrobial activity. HPLC analysis of the 80% methanol extracts for individual phenolics revealed the presence of gallic, protocatechuic and salicylic acid in leaves; gallic, protocatechuic, salicylic, trans-cinnamic and chlorogenic acid in flowers, and gallic acid in bark as the main (amount > 1.50 mg/100 g DW) phenolic acids. Besides, small amounts ( < 1.50 mg/100 g DW) of some other phenolic acids such as sorbic, sinapic, p-coumaric, m-coumaric, ferulic, caffeic, 3-hydroxybenzoic, 4-hydroxycinnamic and 4-hydroxybenzoic acids were also detected. The extracts of the tested parts of Gold Mohar, especially, the leaves, might be valuable for functional food and therapeutic applications.  相似文献   

10.
The human body needs compounds that are antioxidants to prevent oxidative stress. Some parts of the mangosteen fruit (Garcinia mangostana L.) have been known as sources of bioactive compounds that have antioxidant properties. The pericarp and seeds of mangosteen were extracted using the MAE method to produce the extract with the greatest antioxidant activity. There are two types of solvent mixtures used in the extraction process: single-phase and two-phase solvents. The solvents used were ethanol (EtOH), ethyl acetate (EtOAc), isopropyl alcohol (IPA), and water. First, utilizing dried mangosteen pericarp powder as the raw material, a study was undertaken to determine the ideal operating conditions for the MAE process. A one-factor-at-a-time approach was used to find the best operating conditions. A mixture of solvents with varied ratios (mL/mL), extraction temperature (°C), extraction time (min), and solid to solvent ratio (g/mL) were applied as independent variables. Then, dried mangosteen seed powder extraction was carried out based on the best-operating conditions previously achieved. The DPPH scavenging activity, total phenolic content (TPC) value, and α-mangostin content of the two extracts were compared. It was discovered that the mangosteen pericarp extract showed higher antioxidant activity (IC50 DPPH = 9.40 µg/mL) than the mangosteen seed extract (IC50 DPPH = 37.54 µg/mL), even slightly better than ascorbic acid (IC50 DPPH = 10.47 µg/mL). The best extract was produced from the bottom phase of two-phase solvent system (EtOAc:EtOH:Water 2:1:2), with an MAE temperature of 50 °C, a time of 4 min, and a solid-to-solvent ratio of 1:16. The TPC value of the best extract is 903.54 mgGAE/g extract, with a yield of 16.53 % and an α-mangostin concentration of 0.11 %.  相似文献   

11.
Curcumin, a lipophilic polyphenol derived from the rhizome of the plant turmeric (Curcuma longa), might be useful in the prevention and treatment of a number of degenerative brain disorders, including glioma multiforma and Alzheimer’s disease. Thus, there is growing interest in measuring curcumin concentrations in the brain and other target tissues in relevant animal models. We therefore developed and validated (according to the Food and Drug Administration guidelines for bioanalytical method validation), a simple, fast and reliable method for the quantification of curcumin in biological matrices by fast high-performance liquid chromatography with fluorescence detection. This method involves a simple extraction with 95% ethyl acetate and 5% methanol, rapid separation (<2 min if external standards and <4 min if the internal standard β-estradiol 17-acetate is used) on a Jasco Reprosil-Pur Basic C18 column (75 × 2 mm, 1.8 μm) with an eluent of acetonitrile, methanol, de-ionised water and acetic acid (49:20:30:1, v/v; flow rate, 0.4 mL/min) and fluorescence detection (excitation wavelength, 420 nm; emission wavelength, 470 nm). The method is selective, precise (<15% RSD at the lower limit of quantification), accurate (<15% of the coefficient of variation at the lower limit of quantification) and sensitive over a linear range of 0.05–10 μg/mL for curcumin. The developed method was used for the quantification of curcumin in the brains of mice force-fed (50 mg/kg bw) or i.p. injected (100 mg/kg bw) with curcumin. Brain curcumin concentrations of the mice were below the limit of detection at 30, 60 and 120 min after oral gavage and reached 4–5 μg/g brain 20–40 min after i.p. injection. In conclusion, the developed and validated method should be useful for the accurate and precise quantification of curcumin in target organs from relevant animal models of human diseases.  相似文献   

12.

An ultrahigh-pressure supercritical fluid extraction method was optimized and applied to extract seed oil lipids from two moringa species, namely Moringa oleifera (MO) and Moringa peregrina (MP). A full-factorial design was used to investigate the direct and interaction influence of pressure and temperature in the range of 40 to 80 MPa and 40 to 70 °C, respectively, on the extracted amount of oil from crushed seeds. The results revealed that pressure has a significant positive influence on the extracted amount of oil. The best extraction condition using neat CO2 was found at 80 MPa and 57 °C, yielding 396 ± 23 and 529 ± 26 mg oil per gram of seeds for MO and MP, respectively. An extraction kinetics study revealed a mainly solubility-controlled extraction of oil, and 28 g of CO2 was required to extract 400 mg of oil per gram of seeds of MO using the developed method. Addition of ethanol to the sample prior to the extraction increased the proportion of extractable polar lipids as well as the total amount of extracted oil. The developed method increased the extracted amount of oil twofold compared to a reference method based on solvent sonication. The obtained oil consisted mainly of glycerolipids, sterol esters, and phospholipids. Phospholipids, campesterol, and stigmasterol ester concentrations were found to be higher in MO while cholesterol ester was more abundant in MP.

  相似文献   

13.
The extraction condition of curcumin from Curcuma longa L was optimized through four factors and three levels orthogonal experiment based on the results of single factor tests. Under the optimal conditions: the concentration of ethanol  80%, extraction temperature 70°C, the ratio of liquid to material 20, and extraction time 3 h, a crude extract with the yield of curcumin 56.8 mg/g could be obtained. The isolation and purification of curcuminoids from the crude extract was performed on high performance counter current chromatography employing an optimized solvent system n‐hexane/ethyl acetate/methanol/water (2/3/3/1, v/v/v/v). From 97 mg crude sample (in which the purity of curmumin was 68.56%), 67 mg curmumin, 18 mg demethoxycurcumin, and 9.7 mg bisdemethoxycurcumin with a high‐performance liquid chromatography purity of 98.26, 97.39, and 98.67%, respectively, were obtained within 70 min. The antioxidant activities and cytotoxicity of purified curcumin was comparable to that of the commercial product, indicating that the biological activity of curcumin could be maintained by this method.  相似文献   

14.
The present study reports the phenolic antioxidants and phytonutrients profiling in the wild jujube fruits which are naturally grown in Soon valley of Pakistan. Phenolic antioxidant components were recovered from shade-dried wild jujube fruits using various extracting solvents. Among all extracting solvents tested, aqueous ethanol recovered the maximum amount of extractable antioxidant compounds from the fruits of wild jujube. Crude concentrated extracts (CCEs) and phenolic rich fractions (PRFs) recovered from wild jujube fruits using aqueous ethanol contained higher concentration of total phenolics and flavonoids along with superior biological potential. ICP-OES analysis disclosed the occurrence of twenty-five minerals, where potassium (14.80 g/kg) and calcium (1.81 g/kg) were the dominant macro elements. The tested wild fruits juice was found to contain individual natural sugars including galactose (1.27 g/100 g dry weight), glucose (1.07 g/100 g dry weight), sucrose (0.70 g/100 g dry weight) and xylose (0.04 g/100 g dry weight); and gluconic acid (2.10 mg/100 g of dry matter) as dominant organic acid when analyzed on HPLC. The concentration of phenolic antioxidants and biological activities vary significantly (p < 0.05) among extracting systems used. A strong correlation was also recorded among total phenolic (TP), total flavonoids (TF) and biological attributes of tested wild fruits. The results of this study explored wild jujube fruits as a propitious source of natural phenolic components and valuable nutrients which advocate its potential use in the development of functional food and nutraceutical industry.  相似文献   

15.
Daylily is a valuable plant resource with various health benefits. Its main bioactive components are phenolic compounds. In this work, four extraction methods, ultrasonic-assisted water extraction (UW), ultrasonic-assisted ethanol extraction (UE), enzymatic-assisted water extraction (EW), and enzymatic-assisted ethanol extraction (EE), were applied to extract phenolic compounds from daylily. Among the four extracts, the UE extract exhibited the highest total phenolic content (130.05 mg/100 g DW) and the best antioxidant activity. For the UE extract, the DPPH value was 7.75 mg Trolox/g DW, the FRAP value was 14.54 mg Trolox/g DW, and the ABTS value was 15.37 mg Trolox/g DW. A total of 26 phenolic compounds were identified from the four extracts, and the UE extract exhibited a higher abundance range of phenolic compounds than the other three extracts. After multivariate statistical analysis, six differential compounds were selected and quantified, and the UE extract exhibited the highest contents of all six differential compounds. The results provided theoretical support for the extraction of phenolic compounds from daylily and the application of daylily as a functional food.  相似文献   

16.
Oat (Avena sativa) is well known for its various health benefits. The protective effect of oat extract against oxidative stress-induced apoptosis in human keratinocytes HaCaT was determined. First, extracts of two varieties of oat, Daeyang and Choyang, were analyzed for fat-soluble antioxidants such as α-tocotrienol, γ-oryzanols, lutein and zeaxanthin using an UPLC system and for antioxidant activity using a DPPH assay. Specifically, an 80% ethanol extract of Daeyang oat (Avena sativa cv. Daeyang), which had high amounts of antioxidants and potent radical scavenging activity, was further evaluated for protective effect against oxidative stress-induced cell death, intracellular reactive oxygen species levels, the phosphorylation of DNA damage mediating genes such as H2AX, checkpoint kinase 1 and 2, and p53 and the activation of apoptotic genes such as cleaved caspase-3 and 7 and poly (ADP-ribose) polymerase in HaCaT cells. The Daeyang and Choyang oat 80% ethanol extracts had 26.9 and 24.1 mg/100 g γ-oryzanols, 7.69 and 8.38 mg/100 g α-tocotrienol, 1.25 and 0.34 mg/100 g of lutein and 1.20 and 0.17 mg/100 g of zeaxanthin, respectively. The oat 80% ethanol extract treatment (Avena sativa cv. Daeyang) had a protective effect on oxidative stress-induced cell death in HaCaT cells. In addition, the oat 80% ethanol extracts led to a significant decrease in the intracellular ROS level at a concentration of 50–200 μg/mL, the attenuation of DNA damage mediating genes and the inhibition of apoptotic caspase activities in a dose dependent manner (50–200 μg/mL). Thus, the current study indicates that an oat (Avena sativa cv. Daeyang) extract rich in antioxidants, such as polyphenols, avenanthramides, γ-oryzanols, tocotrienols and carotenoids, has a protective role against oxidative stress-induced keratinocyte injuries and that oat may a useful source for oxidative stress-associated skin damage.  相似文献   

17.
The well-known medicinal plant Portulaca oleracea L. (PO) is used as a traditional medicine and culinary herb to treat various diseases. Fatty acids, essential oils, and flavonoids were extracted from PO seeds and leaves using ultrasonic, microwave, and supercritical fluid extraction with RSM techniques. However, investigations on the secondary metabolites and antioxidant capabilities of the aerial part of PO (APO) are scarce. In order to extract polyphenols and antioxidants from APO as effectively as possible, this study used heat reflux extraction (HRE), response surface methodology (RSM), and artificial neural network (ANN) modeling. It also used high-resolution mass spectrometry to identify the APO secondary metabolite. A central-composite design (CCD) was used to establish the ideal ethanol content, extraction time, and extraction temperature to extract the highest polyphenolic compounds and antioxidant activity from APO. According to RSM, the highest amount of TPC (8.23 ± 1.06 mgGAE/g), TFC (43.12 ± 1.15 mgCAE/g), DPPH-scavenging activity (43.01 ± 1.25 % of inhibition) and FRAP (35.98 ± 0.19 µM ascorbic acid equivalent) were obtained at 60.0 % ethanol, 90.2 % time, and 50 °C. Statistical metrics such as the coefficient of determination (R2), root-mean-square error (RMSE), absolute average deviation (AAD), and standard error of prediction (SEP) revealed the ANN's superiority. Ninety-one (91) secondary metabolites, including phenolic, flavonoids, alkaloids, fatty acids, and terpenoids, were discovered using high-resolution mass spectrometry. In addition, 21 new phytoconstituents were identified for the first time in this plant. The results revealed a significant concentration of phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.  相似文献   

18.
In order to extract antioxidant phenolic compounds from spent grain (SG) two extraction methods were studied: the ultrasound-assisted method (US) and the Ultra-Turrax method (high stirring rate) (UT). Liquid to solid ratios, solvent concentration, time, and temperature/stirring rate were optimized. Spent grain extracts were analyzed for their total phenol content (TPC) (0.62 to 1.76 mg GAE/g SG DW for Ultra-Turrax pretreatment, and 0.57 to 2.11 mg GAE/g SG DW for ultrasound-assisted pretreatment), total flavonoid content (TFC) (0.6 to 1.67 mg QE/g SG DW for UT, and 0.5 to 1.63 mg QE/g SG DW for US), and antioxidant activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical (25.88% to 79.58% for UT, and 27.49% to 78.30% for UT). TPC was greater at a high stirring rate and high exposure time up to a certain extent for the Ultra-Turrax method, and at a high temperature for the ultrasound-assisted method. P-coumaric acid (20.4 ± 1.72 mg/100 SG DW for UT, and 14.0 ± 1.14 mg/100 SG DW for US) accounted for the majority of the phenolic found compounds, followed by rosmarinic (6.5 ± 0.96 mg/100 SG DW for UT, and 4.0 ± 0.76 mg/100 SG DW for US), chlorogenic (5.4 ± 1.1 mg/100 SG DW for UT, and non-detectable for US), and vanillic acids (3.1 ± 0.8 mg/100 SG DW for UT, and 10.0 ± 1.03 mg/100 SG DW for US) were found in lower quantities. Protocatechuic (0.7 ± 0.05 mg/100 SG DW for UT, and non-detectable for US), 4-hydroxy benzoic (1.1 ± 0.06 mg/100 SG DW for UT, and non-detectable for US), and caffeic acids (0.7 ± 0.03 mg/100 SG DW for UT, and non-detectable for US) were present in very small amounts. Ultrasound-assisted and Ultra-Turrax pretreatments were demonstrated to be efficient methods to recover these value-added compounds.  相似文献   

19.
Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.  相似文献   

20.
An activity‐based approach to optimize the ultrasonic‐assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition‐activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic‐assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second‐order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号