首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodiolacrenulata (Hook.f. & Thomson) H.Ohba is an alpine medicinal plant that can survive in extreme high altitude environments. However, its changes to extreme high altitude are not yet clear. In this study, the response of Rhodiola crenulata to differences in altitude gradients was investigated through chemical, ICP-MS and metabolomic methods. A targeted study of Rhodiola crenulata growing at three vertical altitudes revealed that the contents of seven elements Ca, Sr, B, Mn, Ni, Cu, and Cd, the phenolic components, the ascorbic acid, the ascorbic acid/dehydroascorbate ratio, and the antioxidant capacity were positively correlated with altitude, while the opposite was true for total ascorbic acid content. Furthermore, 1165 metabolites were identified: flavonoids (200), gallic acids (30), phenylpropanoids (237), amino acids (100), free fatty acids and glycerides (56), nucleotides (60), as well as other metabolites (482). The differential metabolite and biomarker analyses suggested that, with an increasing altitude: (1) the shikimic acid-phenylalanine-phenylpropanoids-flavonoids pathway was enhanced, with phenylpropanoids upregulating biomarkers much more than flavonoids; phenylpropanes and phenylmethanes upregulated, and phenylethanes downregulated; the upregulation of quercetin was especially significant in flavonoids; upregulation of condensed tannins and downregulation of hydrolyzed tannins; upregulation of shikimic acids and amino acids including phenylalanine. (2) significant upregulation of free fatty acids and downregulation of glycerides; and (3) upregulation of adenosine phosphates. Our findings provide new insights on the responses of Rhodiola crenulata to extreme high altitude adversity.  相似文献   

2.
Mentha is an aromatic plant used since antiquity for its pharmaceutical virtues. The climate of Saudi Arabia favors the growth of aromatic plants including Mentha suaveolens L. The aim of this study is to analyze the volatile oils of different parts of fresh and dried Mentha suaveolens L. grown in Saudi Arabia (Aljouf area) using Gas Chromatography/Mass Spectrometry (GC/MS) and Gas Chromatography Flame Ionization Detector (GC/FID) techniques, to recognize the effect of drying on chemical composition, then to evaluate the antioxidant and antifungal activities of different extracts. In total, 118 compounds were identified via GC/MS and GC/FID, in which carvone is the main volatile constituent (stems, leaves, whole plant 45–64%). This investigation deduces that Mentha belonged to the carvone chemotype. Then, the analysis of non-volatile constituents of fresh and dried Mentha was performed by HPLC. The main phenolic compound of fresh and dried Mentha for different parts was rosmarinic acid (ranging from 28,002.5 to 6558 µg/g). The ethanolic extract of fresh stem showed the highest antifungal activity (53% inhibition) compared with miconazole (60% inhibition) but the ethanoic extract of dry stem showed no activity. Additionally, all ethanolic extracts, whether for fresh or dry Mentha, have antioxidant activity more than 90% while the antioxidant activity of whole plant volatile oil is equal to 53.33%. This research shows that M. suaveolens L. could be applied to manufacture natural antioxidants, antifungal, and flavoring agents.  相似文献   

3.
Indian mustard or Brassica juncea (B. juncea) is an oilseed plant used in many types of food (as mustard or IV range salad). It also has non-food uses (e.g., as green manure), and is a good model for phytoremediation of metals and pesticides. In recent years, it gained special attention due to its biological compounds and potential beneficial effects on human health. In this study, different tissues, namely leaves, stems, roots, and flowers of three accessions of B. juncea: ISCI 99 (Sample A), ISCI Top (Sample B), and “Broad-leaf” (Sample C) were analyzed by HPLC-PDA/ESI-MS/MS. Most polyphenols identified were bound to sugars and phenolic acids. Among the three cultivars, Sample A flowers turned were the richest ones, and the most abundant bioactive identified was represented by Isorhamnetin 3,7-diglucoside (683.62 µg/100 mg dry weight (DW) in Sample A, 433.65 µg/100 mg DW in Sample B, and 644.43 µg/100 mg DW in Sample C). In addition, the most complex samples, viz. leaves were analyzed by GC-FID/MS. The major volatile constituents of B. juncea L. leaves extract in the three cultivars were benzenepropanenitrile (34.94% in Sample B, 8.16% in Sample A, 6.24% in Sample C), followed by benzofuranone (8.54% in Sample A, 6.32% in Sample C, 3.64% in Sample B), and phytone (3.77% in Sample B, 2.85% in Sample A, 1.01% in Sample C). The overall evaluation of different tissues from three B. juncea accessions, through chemical analysis of the volatile and non-volatile compounds, can be advantageously taken into consideration for future use as dietary supplements and nutraceuticals in food matrices.  相似文献   

4.
Juglans regia L., walnut, is a large, long-living tree, cultivated in temperate climates around the world. It is highly appreciated for its nutritional kernels and high-quality timber. Its barks, leaves, and husk are used as dyes and in folk medicine as herbal remedies for several diseases. From a biological and chemical standpoint, relatively little is known about the male flowers of the tree. Therefore, the aim of the study was to evaluate the phenolic profile as well as in vitro antioxidant, antimicrobial, and antiproliferative activity of male Juglans regia L. flowers. Phenolic content was determined by UPLC/PDA/MS/MS analyses; antioxidant activity was assessed by five different methods; antimicrobial activity was evaluated against the six most common pathogenic strains of Gram-positive and Gram-negative bacteria, and antiproliferative properties were assessed against six cell lines. Most of the analyses carried out in this study were performed for the first time for this raw material. J. regia flower extract was characterized by a strong ability to scavenge DPPH˙ free radicals, hydroxyl radicals, and chelating metal ions. Among the examined bacterial strains and neoplastic lines, the strongest antimicrobial activity was shown against S. aureus, L. monocytogenes, and B. cereus, and cytotoxic activity against breast cancer, glioblastoma, and astrocytoma cells. Male J. regia flowers have also been found to be a rich source of phenolic compounds. The content of polyphenols in the extract was 4369.73 mg/100 g d.w., and 24 compounds from the group of flavonoids, phenolic acids, and juglunosides were identified. Additionally, a strong correlation between the content of polyphenols and the antioxidant capacity and cytotoxic activity was observed. This is why the tested J. regia flowers are an excellent source of effective natural antioxidant, antibacterial, and chemopreventive compounds that have potential to be used in the pharmaceutical or food industries.  相似文献   

5.
Ruscus aculeatus L. is a subshrub used in traditional medicine in different parts of the world, namely in Europe and the Iberian Peninsula. According to reported folk knowledge, the aerial parts are mainly used as diuretics and the underground organs are used for the treatment of disorders of the urinary system and as a laxative. In this work, the aerial part and the roots and rhizomes of R. aculeatus were chemically characterized with regard to the content of phenolic compounds and bioactive properties. Aqueous (infusions and decoctions) preparations and hydroethanolic extracts from the two mentioned parts of the plant were prepared. Nine phenolic compounds were detected in all the extracts. Apigenin-C-hexoside-C-pentoside isomer II was the major compound in aqueous extracts and, in the hydroethanolic extract was quercetin-O-deoxyhexoside-hexoside followed by apigenin-C-hexoside-C-pentoside isomer II. All extracts revealed antioxidant activity and potential to inhibit some of the assayed bacteria; aqueous extracts of the aerial part and infusions of roots and rhizomes did not show cytotoxic effects on a non-tumor primary cell culture. This preliminary study provides suggestions of the biological potential associated with the empirical uses and knowledge of this species, in particular its bioactivities.  相似文献   

6.
Aesculus flowers and leaves are an excellent source of bioactive compounds, including flavanols, phenolic acids, and anthocyanins, and the leaves also contain antioxidant carotenoids and chlorophylls. The aim of this study was to analyse and compare the amounts of bioactive compounds present in Aesculus hippocastanum and Aesculus × carnea flowers and leaves over two years. These two species from six independent locations (parks and green areas) located in Warsaw were assessed in this study. The dry matter by the scale method and polyphenol, carotenoid, and chlorophyll content by the HPLC method of the flowers and leaves was evaluated. Red horse chestnut flowers contained significantly more total carotenoids (40.6 µg/g FW) and chlorophylls (36.9 µg/g FW) than horse chestnut flowers, and red horse chestnut flowers contained higher levels of anthocyanins (5.41 µg/g FW) than other species. We observed that horse chestnut flowers were characterized by a higher total polyphenols concentration (9.45 µg/g FW) compared to red horse chestnut flowers. In addition, the analysis of leaves showed that all quality parameters were higher in red horse chestnut species. Five individual anthocyanins were identified in both species’ flowers, but a higher concentration was found in red horse chestnut flowers, and pelargonidin-3-O-glucoside was the predominant form among a pool of total anthocyanins. In both experimental years, leaves (109.25 mMol/100 g FW and 112.0 mMol/100 g FW) were characterized by a higher antioxidant activity than flowers (27.0 mMol/100 g FW and 27.5 mMol/100 g FW).  相似文献   

7.
The present study aims to systematically investigate the adsorption kinetics of “non-volatile” phenolic compounds with different critical diameters (p-coumaric acid, ferulic acid, sinapinic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, and vanillin) onto zeolite beta and silicalite in several solvents. In the aqueous phase, the corrected diffusivity of non-volatile phenolic compounds is 2–5 orders of magnitude smaller than that of volatile aromatic compounds with the same critical diameter. On the other hand, the corrected diffusivity in zeolite beta is on the same order of magnitude among non-volatile phenolic compounds, despite the significant difference in critical diameter of the adsorbate. This suggests that the intracrystalline diffusivity of the non-volatile adsorbate is strongly affected by its original molecular immobility, rather than by the size (narrowness) of the adsorbate and micropore aperture. Non-volatility is considered to remarkably lower the molecular mobility of adsorbate on the surface of zeolite, even in the liquid phase. In addition, the intracrystalline diffusivity of non-volatile adsorbate is strongly affected by the type of solvent, and a close correlation was found between intracrystalline diffusivity and adsorption affinity. Revelations as to the kinetic behavior of non-volatile adsorbate in zeolite are expected to supply more information on the kinetic separation of compounds in the liquid phase. The significant difference in diffusivity among non-volatile and volatile adsorbates in zeolite leads to the possibility of kinetic separation among these adsorbates.  相似文献   

8.
9.
In continuation of research conducted on species of the spontaneous flora of Sicily (Italy) belonging to the Brassicaceae family, Brassica fruticulosa subsp. fruticulosa was selected. It is an edible species utilized in Sicilian traditional medicine. In this study, for the first time, the phenolic and the volatile compounds and the antioxidant properties of the hydroalcoholic extract obtained from the leaves of B. fruticulosa subsp. fruticulosa were characterized. Through HPLC-PDA/ESI-MS analysis, a total of 22 polyphenolic compounds (20 flavonoids and 2 phenolic acids) were identified, with 3-hydroxiferuloylsophoroside-7-O-glucoside (1.30 mg/g ± 0.01) and kaempferol-3-O-feruloylsophoroside-7-O-glucoside (1.28 mg/g ± 0.01) as the most abundant compounds. Through SPME-GC/MS several volatiles belonging to different chemical classes were characterized, with nitriles and aldehydes accounting for more than 54% of the whole volatile fraction. The extract of B. fruticulosa subsp. fruticulosa showed moderate activity in the DPPH assay (IC50 = 1.65 ± 0.08 mg/mL), weak reducing power (17.47 ± 0.65 ASE/mL), and good chelating properties (IC50 = 0.38 ± 0.02 mg/mL), reaching approximately 90% activity at the highest tested concentration. Lastly, the extract was non-toxic against Artemia salina, indicating its potential safety. According to the findings, it can be stated that B. fruticulosa subsp. fruticulosa represents a new valuable source of bioactive compounds.  相似文献   

10.
Moringa oleifera leaves are cultivated in warm regions of Brazil for commercial ends due to their nutritional and biological properties. This study evaluated, by chemometric tools, the influence of seasonality (winter, spring, autumn, and summer), growing area in Brazil (South, Southeast, and Northeast), and regrowth age (40 and 80 days) in antioxidant potential, and biochemical markers determined by HPLC-DAD. The results obtained in the present study showed that all the parameters evaluated were affected by seasonality, regrowth age, and growing region. The content of phenolic compounds and antioxidant activity using the ABTS method was higher in samples cultivated in the southeast (59.4 mg GAE g?1 and 346 µmol TEAC g?1, respectively). The highest antioxidant activities evaluated by DPPH and FRAP methods were obtained from leaves of the southeast and northeast. In addition, young leaves presented higher antioxidant potential and total phenolic content. The cultivation region significantly influenced the content of chlorogenic acid, isoquercitrin, and astragalin, which ranged from 4.2 to 7.2 mg g?1, 8.0 to 10.7 mg g?1, and 2.2 to 3.8 mg g?1, respectively. In addition, a positive correlation between solar radiation and temperature with caffeic acid, rutin, phenolic compounds, and antioxidant assay from the DPPH method was observed. Additionally, the RGB pattern of the images of these leaves was correlated with the levels of compounds with antioxidant activity. Models generated through machine learning showed good performances, and ABTS and rutin analyses developed the best models with a coefficient of determination above 75 %. Thus, color patterns can be used to measure the antioxidant activity by the ABTS method and to determine the rutin concentration in M. oleifera leaves.  相似文献   

11.
As a very popular sample preparation technique, solid-phase microextraction (SPME) coupled with various analytical instrumentation, has been widely used for the determination of trace levels of different plant compounds, such as volatile organic compounds (VOCs) emitted from the different plant organs, and environmental contaminants in plants. In this review, recent applications of in vitro and in vivo SPME in plant analysis are discussed and summarized according to the different organs of plants, including fruits, flowers, leaves, stems, roots and seeds, and the whole plant as well. Future developments and applications of SPME in plant analysis, especially in vivo sampling approaches, are also prospected.  相似文献   

12.
Pitaya is one of the most preferred and produced tropical fruit species recently introduced to the Mediterrranean region in Turkey. Due to its nutritional fruits with high economic value, the popularity of pitaya increases steadily in Turkey as an alternative crop. No detailed nutritional analysis has been undertaken in Turkey so far on fruits of the pitaya species. In this study, we determined and compared some nutritional parameters in fruit flesh of two pitaya (dragon fruit) species (Hylocereus polyrhizus: Siyam and Hylocereus undatus: Vietnam Jaina) grown in the Adana province located in the eastern Mediterranean region in Turkey. The individual sugars, antioxidant activity, total phenolic content, phenolic compounds and volatiles were determined for the first time in Turkey on two pitaya species. The results showed that total phenol content and antioxidant capacity are notably higher in red-fleshed fruits than white-fleshed ones and the predominant phenolic compound in fruits of both species was quercetin. The total sugar content and most of the phenolic compounds in fruits of two pitaya species were similar. A total of 51 volatile compounds were detected by using two Solid Phase Micro Extraction (SPME) fibers, coupled with Gas Chromatography Mass Spectrometry (GC-MS) techniques, and more volatile compounds were presented in the white-fleshed species. Total phenolic content (TPC) of the red-fleshed and white-fleshed pitaya species were 16.66 and 17.11 mg GAE/100 g FW (fresh weight). This study provides a first look at the biochemical comparison of red-fleshed and white-fleshed pitaya species introduced and cultivated in Turkey. The results also showed, for the first time, the biochemical content and the potential health benefit of Hylocereus grown in different agroecological conditions, providing important information for pitaya researchers and application perspective.  相似文献   

13.
The analysis of major and minor flavonoids, and antioxidant capacity of stems, leaves, flowers, unripe seeds and ripe seeds of common and tartary buckwheat plants collected during different growth periods was addressed in this study. The highest rutin contents were observed in flowers and leaves collected from common and tartary buckwheat at early flowering as well as flowering and seed formation states. A low quercetin contents were found in all studied aerial part of buckwheat plants. Quercitrin (quercetin-3-rhamnoside) was only found in flowers collected at different growth periods while flavone C-glucosides were accumulated preferentially only in unripe seeds collected from common buckwheat at an early flowering state. The rank of antioxidant capacity provided for aerial parts of common and tartary buckwheat at early flowering state was as follows: flowers > leaves > stems. The highest contribution of rutin to the antioxidant capacity of the aerial parts of common and tartary buckwheat was found for stems followed by leaves, flowers and unripe seeds. The results demonstrate that flowers from common and tartary buckwheat collected at early flowering as well as flowering and seed formation states have the future potential to be a useful food ingredient.  相似文献   

14.
This study compared phenolic contents and antioxidant activity in different organs of Acacia albida (leaves and bark) and focuses on identification of phenolic compounds of leaves by HPLC-DAD. The analysed organs exhibited differences in total polyphenol contents (100 and 59.5 mg GAE g? 1 DW). Phenolic contents of leaves were two times higher than those in bark. Ethanolic extracts exhibited good antioxidant activities with IC50 = 26 μg mL? 1 for DPPH and EC50 = 50 μg mL? 1 for FRAP. Identification by HPLC-DAD revealed the presence of nine phenolic compounds known for their high antioxidant activity. The results suggested that this species can be used as source of natural antioxidants.  相似文献   

15.
Hawthorn leaves are a rich source of phenolic compounds that possess beneficial activities for human health. Ultrasonic-assisted extraction (UAE) is an extraction technique frequently used for the isolation of phenolic compounds in plants. Thus, in this study, a Box–Behnken design was used to optimize UAE conditions such as the percentage of acetone, the extraction time and solvent-to-solid ratio (v/w) in order to obtain the maximum content of total compounds by Folin–Ciocalteu and the maximum in vitro antioxidant activity by DPPH, ABTS and FRAP assays in Crataegus monogyna leaves. The optimum conditions to obtain the highest total phenolic content and antioxidant activities were 50% acetone, 55 min and 1/1000 (w/v). A total of 30 phenolic compounds were identified and quantified in C. monogyna leaf extract obtained at these optimum UAE conditions. HPLC-MS allows the identification and quantification of 19 phenolic compounds and NP-HPLC-FLD analyses showed the presence of 11 proanthocyanidins. According to the results, the most concentrated phenolic compounds in C. monogyna leaf extract obtained at optimum UAE conditions were phenolic acid derivatives such as protocatechuic acid-glucoside, dihydroxy benzoic acid pentoside and chlorogenic acid, flavones such as 2″-O-rhamnosyl-C-hexosyl-apigenin, flavonols such as hyperoside and isoquercetin and proanthocyanidins such as monomer and dimer. As a result, the optimized UAE conditions could be used to obtain an extract of C. monogyna leaves enriched with phenolic compounds.  相似文献   

16.
The present study was designed to evaluate polarity-dependent extraction efficiency and pharmacological profiling of Polygonum glabrum Willd. Crude extracts of leaves, roots, stems, and seeds, prepared from solvents of varying polarities, were subjected to phytochemical, antioxidant, antibacterial, antifungal, antidiabetic, and cytotoxicity assays. Maximum extraction yield (20.0% w/w) was observed in the case of an acetone:methanol (AC:M) root extract. Distilled water:methanol (W:M) leaves extract showed maximum phenolic contents. Maximum flavonoid content and free radical scavenging potential were found in methanolic (M) seed extract. HPLC-DAD quantification displayed the manifestation of substantial quantities of quercetin, rutin, gallic acid, quercetin, catechin, and kaempferol in various extracts. The highest ascorbic acid equivalent total antioxidant capacity and reducing power potential was found in distilled water roots and W:M leaf extracts, respectively. Chloroform (C) seeds extract produced a maximum zone of inhibition against Salmonella typhimurium. Promising protein kinase inhibition and antifungal activity against Mucor sp. were demonstrated by C leaf extract. AC:M leaves extract exhibited significant cytotoxic capability against brine shrimp larvae and α-amylase inhibition. Present results suggest that the nature of pharmacological responses depends upon the polarity of extraction solvents and parts of the plant used. P. glabrum can be considered as a potential candidate for the isolation of bioactive compounds with profound therapeutic importance.  相似文献   

17.
Volatile oils from flowers and leaves of C. creticus L. and C. salviifolius L. were extracted by two extraction methods; namely, hydrodistillation and solid-phase micro-extraction (SPME). The chemical composition of essential oils was analyzed by GC and GC–MS. The volatile extracted from leaves and flowers of C. criticus using SPME was dominated by monoterpenes and sesquiterpenes hydrocarbon with α-pinene, camphene and α-cubebene as major components. In hydrodistillation, the oil extracted from leaves was dominated by oxygenated diterpenes and diterpenes hydrocarbon with manoyl oxide and sclarene as major components, whereas, the oil extracted from flowers was dominated by oxygenated diterpenes and diterpenes hydrocarbon with manoyl oxide and abietatriene as major components. The volatile from flowers and leaves of C. salviifolius obtained by SPME were dominated by monoterpenes and sesquiterpenes with δ-3-carene, α-pinene, β-pinene, and E-caryophyllene as major constituents. On the other hand, the oils from flowers and leaves of C. salviifolius obtained by hydrodistillation were dominated by oxygenated diterpenes, diterpenes hydrocarbon and esters with dehydro abietol, abietol, manoyl oxide and methyl octadecenoate as major components. In the leaves, the major components of the oil were manoyl oxide, E-ethyl cinnamate, and Z-ethyl cinnamate. These oils showed weak antioxidant activity when compared to the positive controls α-tocopherol, ascorbic acid, and EDTA, while the crude extracts aq. MeOH, butanol, and water showed good antioxidant activity. Discriminating between the studied plants based on the extraction method was also possible upon applying Principle component analysis (PCA) to the obtained GC–MS data.  相似文献   

18.
Gas chromatography-mass spectrometry identified more than 20 volatile organic compounds isolated from leaves and flowers ofAegopodium podagrariaL.  相似文献   

19.
A very simple and direct method was developed for the qualitative analysis of polyphenols in boldo (Peumus boldus Mol., Monimiaceae) leaves infusions by high-performance liquid chromatography with diode array detection (HPLC-DAD) and electrospray ionization tandem mass spectrometry (HPLC-MSn). The phenolic constituents identified in infusions of the crude drug Boldo Folium were mainly proanthocyanidins and flavonol glycosides. In the infusions, 41 compounds were detected in male and 43 compounds in female leaf samples, respectively. Nine quercetin glycosides, eight kaempferol derivatives, nine isorhamnetin glycosides, three phenolic acids, one caffeoylquinic acid glycoside and twenty one proanthocyanidins were identified by HPLC-DAD and ESI-MS for the first time in the crude drug. Isorhamnetin glucosyl-di-rhamnoside was the most abundant flavonol glycoside in the male boldo sample, whereas isorhamnetin di-glucosyl-di-rhamnoside was the main phenolic compound in female boldo leaves infusion. The results suggest that the medicinal properties reported for this popular infusion should be attributed not only to the presence of catechin and boldine but also to several phenolic compounds with known antioxidant activity. The HPLC fingerprint obtained can be useful in the authentication of the crude drug Boldo Folium as well as for qualitative analysis and differentiation of plant populations in the tree distribution range.  相似文献   

20.
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号