首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates that proper SEI layer on graphite anode is essential in LiNi0.5Mn1.5O4(LNMO)/graphite 5 V lithium-ion batteries. Succinic anhydride (SA) and 1,3-propane sultone (PS) were found to greatly extend cycle life and suppress swelling behavior of LNMO/graphite cells. The benefits of SA and PS were ascribed not only to the stable SEI layer they form on graphite but also to their stability toward the oxidation at high voltage. Using 1 M LiPF6 EC/EMC (1/2, v/v) solutions with SA and PS, LNMO/graphite Al-laminated pouch cell with nominal capacity of 600 mA h exhibited about 80% capacity retention after 100 cycles. This is the first report on the successful LNMO/graphite 5 V LIB to our best knowledge.  相似文献   

2.
Here we demonstrate Na4Mn9O18 as a sodium intercalation positive electrode material for an aqueous electrolyte energy storage device. A simple solid-state synthesis route was used to produce this material, which was then tested electrochemically in a 1 M Na2SO4 electrolyte against an activated carbon counter electrode using cyclic voltammetry and galvanostatic cycling. Optimized Na4Mn9O18 was documented as having a specific capacity of 45 mAh/g through a voltage range of 0.5 V, or an equivalent specific capacitance of over 300 F/g. With the proper negative:positive electrode mass ratio, energy storage cells capable of being charged to at least 1.7 V without significant water electrolysis are documented. Cycling data and rate studies indicate promising performance for this unexplored low-cost positive electrode material.  相似文献   

3.
《Polyhedron》2007,26(9-11):1845-1848
The reaction of the neutral triangular species [Mn3O(O2CR)6L3] (R = Me, Ph, CMe3; L = py) with the tripodal ligands H3tmp (1, 1, 1-tris(hydroxymethyl)propane) and H4peol (pentaerythritol) affords the enneanuclear complexes [Mn9O7(O2CMe)11(tmp)(py)3(H2O)2] (2); [Mn9O7(O2CMe)11(Hpeol)(py)3(H2O)2] (3); [Mn9O7(O2CCMe3)11(Hpeol)(py)3(H2O)2] (4); and [Mn9O7(O2CPh)11(Hpeol)(py)3(H2O)2] (5). Complexes 25 are characterized by spin ground states of S = 17/2 with axial zero-field splitting parameters in the range D = −0.26–0.30 cm−1. Sweep-rate and temperature dependent hysteresis loops diagnostic of SMM behaviour are observed below 1.2 K featuring steps at regular intervals of field.  相似文献   

4.
High performance LiNi0.5Mn1.5O4 was prepared by a combinational annealing method. All samples were characterized by X-ray diffraction, infrared, and cell measurements. With increasing the annealing time at 600 °C, LiNi0.5Mn1.5O4 showed a decreased lattice parameter and an enhanced Ni-ordering. The electrochemical property of LiNi0.5Mn1.5O4 was optimized by controlling the annealing time. It was found that after annealing at 600 °C for 8 h, LiNi0.5Mn1.5O4 can discharge up to 138 mA h g−1 with a superior cycling performance at the rate of 5/7 C. High-rate test indicated that LiNi0.5Mn1.5O4 exhibited excellent electrochemical performance when charged and discharged at 1.2 C and 2.5 C, respectively. The findings reported in this work are expected to pave the way for the practical application of LiNi0.5Mn1.5O4.  相似文献   

5.
Cu1.3Mn1.7O4 spinel oxide has been synthesized and characterized as anode internal reforming layer for Ni–SDC anode-supported solid oxide fuel cells (SOFCs) directly operating on methane fuel. XRD and Cu mapping image results of Cu1.3Mn1.7O4 oxide after in-situ reduction by methane show that a highly dispersed nano-Cu metal network has been obtained. By adopting Cu1.3Mn1.7O4 as an internal reforming layer, the cell demonstrated maximum power densities of 242 and 311 mW cm?2 at 650 and 700 °C, respectively using methane as fuel and ambient air as oxidant. More importantly, Cu1.3Mn1.7O4 internal reforming layer has significantly improved the cell performance stability. The cell with the Cu1.3Mn1.7O4 internal reforming layer has demonstrated reasonably stable performance while the cell without it degraded very rapidly.  相似文献   

6.
Graphene was easily obtained via one-step ultrasonic exfoliation of graphite powder in N-methyl-2-pyrrolidone. Scanning electron microscopy, transmission electron microscopy, Raman and particle size measurements indicated that the exfoliation efficiency and the amount of produced graphene increased with ultrasonic time. The electrochemical properties and analytical applications of the resulting graphene were systematically studied. Compared with the predominantly-used reduced graphene oxides, the obtained graphene by one-step solvent exfoliation greatly enhanced the oxidation signals of various analytes, such as ascorbic acid (AA), dopamine (DA), uric acid (UA), xanthine (XA), hypoxanthine (HXA), bisphenol A (BPA), ponceau 4R, and sunset yellow. The detection limits of AA, DA, UA, XA, HXA, BPA, ponceau 4R, and sunset yellow were evaluated to be 0.8 μM, 7.5 nM, 2.5 nM, 4 nM, 10 nM, 20 nM, 2 nM, and 1 nM, which are much lower than the reported values. Thus, the prepared graphene via solvent exfoliation strategy displays strong signal amplification ability and holds great promise in constructing a universal and sensitive electrochemical sensing platform.  相似文献   

7.
4-Amino-2,2,6,6-tetramethyl-1-piperridine N-oxyl (4-amino-TEMPO), an electroactive nitroxide radical, was attached to the surface of graphene oxide (GO) and electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode by a simple, rapid and green electrografting method. The electroactive interfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The calculated surface coverage for 4-amino-TEMPO is up to 1.55 × 10 9 mol·cm 2. The modified electroactive interface exhibited excellent electrocatalytic activity towards the electro-oxidation of reduced glutathione (GSH) and hydrogen peroxide (H2O2).  相似文献   

8.
A novel layered ternary material K0.67Ni0.17Co0.17Mn0.66O2 has been fabricated via a co-precipitation assisted solid-phase method and further evaluated as a cathode for potassium-ion batteries for the first time. Highly reversible K+ intercalation/deintercalation is demonstrated in this material. It delivers a reversible capacity of 76.5 mAh/g with average voltage of 3.1 V and shows good cycling performance with capacity retention of 87% after 100 cycles at 20 mA/g. This work may give a new insight into developing cathode materials for potassium-ion batteries.  相似文献   

9.
A series of lithium–manganese–nickel-oxide compositions that can be represented in three-component notation, xLi[Mn1.5Ni0.5]O4 · (1  x){Li2MnO3 · Li(Mn0.5Ni0.5)O2}, in which a spinel component, Li[Mn1.5Ni0.5]O4, and two layered components, Li2MnO3 and Li(Mn0.5Ni0.5)O2, are structurally integrated in a highly complex manner, have been evaluated as electrodes in lithium cells for x = 1, 0.75, 0.50, 0.25 and 0. In this series of compounds, which is defined by the Li[Mn1.5Ni0.5]O4–{Li2MnO3 · Li(Mn0.5Ni0.5)O2} tie-line in the Li[Mn1.5Ni0.5]O4–Li2MnO3–Li(Mn0.5Ni0.5)O2 phase diagram, the Mn:Ni ratio in the spinel and the combined layered Li2MnO3 · Li(Mn0.5Ni0.5)O2 components is always 3:1. Powder X-ray diffraction patterns of the end members and the electrochemical profiles of cells with these electrodes are consistent with those expected for the spinel Li[Mn1.5Ni0.5]O4 (x = 1) and for ‘composite’ Li2MnO3 · Li(Mn0.5Ni0.5)O2 layered electrode structures (x = 0). Electrodes with intermediate values of x exhibit both spinel and layered character and yield extremely high capacities, reaching more than 250 mA h/g with good cycling stability between 2.0 V and 4.95 V vs. Li° at a current rate of 0.1 mA/cm2.  相似文献   

10.
Single phase LiCr0.2Ni0.4Mn1.4O4 spinel has been synthesized by a simple sucrose assisted combustion method that yields highly crystalline homogeneous sub-micrometric samples (650 nm). The LiCr0.2Ni0.4Mn1.4O4, with capacity retention of 92% at 60 C discharge rate, shows the highest rate capability among LiNi0.5Mn1.5O4-type cathodes. It delivers very high-power (34.8 kW kg?1 at 60 C). Studies developed at 55 °C demonstrate that LiCr0.2Ni0.4Mn1.4O4 retains huge rate capability and large cycleability at high temperature.  相似文献   

11.
Doping and functionalization could significantly assist in the improvement of the electrochemical properties of graphene derivatives. Herein, we report a one-pot synthesis of fluorinated graphene oxide (FGO) from graphite. The surface morphology, functionalities and composition of the resulting FGO have been studied using various surface characterization techniques, revealing that layer-structured nanosheets with ~ 1.0 at.% F were formed. The carbon bound F exhibited semi-ionic bonding characteristic and significantly increased the capacitance of FGO compared to GO. Further, the FGO has been employed for the simultaneous detection of heavy metal ions Cd2 +, Pb2 +, Cu2 + and Hg2 + using square wave anodic stripping voltammetry; and a substantial improvement in the electrochemical sensing performance is achieved in comparison with GO.  相似文献   

12.
A comparative study regarding the electrocatalytic activity of graphene oxide (GO), chemically-reduced graphene oxide (crGO) and graphene produced by direct liquid exfoliation (dG) is presented. Sensors were developed by modifying glassy carbon (GC) electrodes with GO, crGO and dG and ascorbic acid was used as a pilot analyte. GC/GO electrodes offer substantially lower oxidation overpotential, up to 350 mV, compared with GC/crGO, GC/dG and unmodified GC electrodes. In addition, the different carbon-to-oxygen atomic ratios in GO, as it occurs depending on the synthetic route, were found to have a remarkable effect on the performance of the sensors. Reduction of GO was achieved by immersing the modified electrodes into a stirred solution of NaBH4 for 10 min at room temperature. This process was used alternatively of the time consuming and laborious process of hydrazine, and its effectiveness was confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. Analytical utility of the sensors is demonstrated.  相似文献   

13.
A simple, yet novel process was developed where magnetic graphene-CdS (Fe3O4-CdS/G) nanocomposites were prepared by a one-pot solvothermal route in which the reduction of graphite oxide (GO) into graphene was accompanied by the generation of CdS and Fe3O4 nanoparticles. The results of TEM and XRD studies indicate the formation of Fe3O4-CdS/G nanocomposites. Besides vibration sample magnetometry, fluorescence spectra and loading of doxorubicin (DOX) reveal that this new nanocomposite possesses good superparamagnet (44.85 emu/g), good fluorescent properties and a high loading efficiency (0.98 mg/mg). The efficient, stable, and water soluble nanocomposites are confirmed to be suitable for biomedical applications.  相似文献   

14.
The rate capability and cyclic performance of the LiNi0.5Mn1.5O4 under high current density have been significantly improved by doping a small amount of ruthenium (Ru). Specifically, Li1.1Ni0.35Ru0.05Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 synthesized by solid state reaction can respectively deliver a discharge capacity of 108 and 117 mAh g?1 at 10 C rate between 3 and 5 V. At 10 C charge/discharge rate, Li1.1Ni0.35Ru0.05Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 can respectively maintain 91% and 84% of their initial capacity after 500 cycles, demonstrating that Ru-doping could be a way to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4.  相似文献   

15.
Effects induced by high-dose irradiation on manganese- and silver-doped Li2B4O7 (lithium tetraborate, LTB) single crystals were monitored by photoluminescence and optical absorption spectroscopy. High-dose (1.0×103 and 1.2×104 Gy) irradiation of the samples was performed using high-energy, short-time (4 MeV, 2.6 μs) electron pulses of a linear electron accelerator. Changes in the oxidation states of dopants were revealed. Recharging of manganese Mn2+→Mn3+ and Ag+→Ag0 were observed. Ionization process Mn2+→Mn3++e and creation of Ag0-nanoparticles are supposed.  相似文献   

16.
The use of a convenient source of MnIII ions, namely the [Mn(OR)(O2CR′)2]n (R = H, Me, and R′ = Me, But) family of 1-D coordination polymers, afforded two new enneanuclear and decanuclear molecular clusters, homometallic [Mn9O7(O2CBut)13(MeCN)2] (3) and heterometallic [Mn10?xFex(OMe)20(O2CMe)10] (x < 10) (4), respectively. Compound 3 was synthesized by a solvent-induced structural transformation, whereas complex 4 resulted from the reaction of [Mn(OH)(O2CMe)2]n with an FeIII source. The core of 3 comprises two [Mn4O2]8+ butterfly units and a [Mn3O]7+ triangular unit fused together by sharing one Mn atom. Magnetic susceptibility measurements of 3 revealed dominant antiferromagnetic interactions within the molecule, and a ground state of S = 1 with many low-lying excited states. Complex 4 is a mixed FeIII/MnIII single-strand molecular wheel, which forms 3D nanotubular stacks arranged in a zig–zag fashion. The described work suggests that the [Mn(OR)(O2CR′)2]n compounds represent excellent starting materials for MnIII carboxylate cluster chemistry.  相似文献   

17.
A sensitive electrochemical method for H2O2 determination was proposed with carboxyl functionalized graphene oxide (GO-COOH) as mimetic peroxidase and 3,3′,5,5′-tetramethylbenzidine (TMB) as substrate. GO-COOH exhibited intrinsic peroxidase-like activity that could catalyze the oxidation of TMB with H2O2. The generated product exhibited a sensitive second order derivative linear sweep voltammetric reduction peak at − 0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer. Under the optimal conditions the reduction peak current was proportional to H2O2 concentration in the linear range from 0.006 to 0.8 μmol L 1 with the detection limit of 1.0 nmol L 1 (3σ). This proposed method was further applied to determine H2O2 content in fresh milk samples with satisfactory results.  相似文献   

18.
With an aim to suppress the huge irreversible capacity loss encountered in high capacity layered oxide solid solutions between Li2MnO3 and LiMO2 (M = Mn, Ni, and Co), layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with various V2O5 contents have been investigated. The irreversible capacity loss decreases from 68 mAh/g at 100% Li[Li0.2Mn0.54Ni0.13Co0.13]O2 to 0 mAh/g around 89 wt.% Li[Li0.2Mn0.54Ni0.13Co0.13]O2–11 wt.% V2O5 as the lithium-free V2O5 serves as an insertion host to accommodate the lithium ions that could not be inserted back into the layered lattice after the first charge. The Li[Li0.2Mn0.54Ni0.13Co0.13]O2–V2O5 composite cathodes with about 10–12 wt.% V2O5 exhibit an attractive discharge capacity of close to 300 mAh/g with little irreversible capacity loss and good cyclability.  相似文献   

19.
We developed an electrochemical in situ cell for soft x-ray emission spectroscopy (XES) to accurately investigate the redox reaction and electronic structure of transition metals in the cathode materials for Li–ion battery. The in situ cell consists of a Li–metal counter electrode, an organic electrolyte solution, and a cathode on a membrane window which separates the liquid electrolyte from high vacuum and can pass the incoming and emitted photons. In this study, the Mn 3d electronic structure of LiMn2O4 thin-film electrode was clarified by the operando XES. At the charged state, the XES spectrum changed significantly from the open-circuit-voltage (OCV) state, suggesting oxidation of the Mn3 + component through Li–ion extraction. Upon discharge up to 3.0 V vs. Li/Li+, the XES spectrum almost returned to its profile at the OCV state with small difference, indicating the valence change of Mn: Mn3.6 +  Mn4 +  Mn3.3 + corresponding to the OCV, charged, and discharged states.  相似文献   

20.
Novel γ-Al2O3 supported nickel (Ni/Al2O3) catalyst was developed as a functional layer for Ni–ScSZ cermet anode operating on methane fuel. Catalytic tests demonstrated Ni/Al2O3 had high and comparable activity to Ru–CeO2 and much higher activity than the Ni–ScSZ cermet anode for partial oxidation, steam and CO2 reforming of methane to syngas between 750 and 850 °C. By adopting Ni/Al2O3 as a catalyst layer, the fuel cell demonstrated a peak power density of 382 mW cm?2 at 850 °C, more than two times that without the catalyst layer. The Ni/Al2O3 also functioned as a diffusion barrier layer to reduce the methane concentration within the anode; consequently, the operation stability was also greatly improved without coke deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号