首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In this work, for the first time, we constructed a novel multi‐nanozymes cooperative platform to mimic intracellular antioxidant enzyme‐based defense system. V2O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2O5@pDA@MnO2 nanocomposite could serve as one multi‐nanozyme model to mimic intracellular antioxidant enzyme‐based defense procedure in which, for example SOD, CAT, and GPx co‐participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy.  相似文献   

2.
The influence of CCl4 on the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), the value of the total antioxidant status (TAS), and the concentration of malonic dialdehyde (MDA) and glutathione (GSH) was monitored in plasma or whole blood of rabbits. The administration of CCl4 caused the increase of the SOD activity to approximately 150 % and the decrease in the activity of GPx and GR by about 50 %. These changes were accompanied with the increase in TAS value and MDA concentration and the decrease of GSH concentration. The effect of CCl4 was suppressed by the previous 7 days lasting or simultaneous administration of vitamin E. Oxidative stress caused by CCl4 was accompanied by the development of reactive oxygen forms, especially superoxide radical anion.  相似文献   

3.
Yu S  Zhang W  Zhu J  Yin Y  Jin H  Zhou L  Luo Q  Xu J  Liu J 《Macromolecular bioscience》2011,11(6):821-827
A HBSP has been designed as a novel bifunctional enzyme model with SOD and GPx activity by host/guest‐directed self‐assembly of MnTPyP‐M‐Ad and 6‐Te‐diCD. The structure of the host/guest complex was elucidated by 1H NMR spectra, and the HBSP was characterized by SEM, DLS and measurement of catalytic properties. In the bifunctional enzyme model, the Mn(III) porphyrins act as efficient SOD active sites and the tellurol moieties endow GPx activity. The SOD‐like activity (IC50) of this new supramolecular catalyst was found to be 1.05 × 10?7 M, which corresponds to 2.82% of the activity of the native SOD enzyme. Besides this, the hyperbranched supramolecular polymer also shows a higher GPx activity (ν0 = 21.7 × 10?6 M · min?1) than other supramolecular enzyme models.

  相似文献   


4.
An antioxidant microgel with both glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities is reported. Using computational design and genetic engineering methods, the main catalytic components of GPx are fabricated onto the surface of ferritin. The resulting seleno‐ferritin (Se‐Fn) monomers can self‐assemble into nanocomposites that exhibit remarkable GPx activity due to the well organized multi‐GPx catalytic centers. Subsequently, a porphyrin derivative is synthesized as an SOD mimic, and is employed to construct a synergistic dual enzyme system by crosslinking Se‐Fn nanocomposites into a microgel. Significantly, this dual enzyme microgel is demonstrated to display better antioxidant ability than single GPx or SOD mimics in protecting cells from oxidative damage.

  相似文献   


5.
Type-2 diabetes mellitus (T2DM), the leading global health burden of this century majorly develops due to obesity and hyperglycemia-induced oxidative stress in skeletal muscles. Hence, developing novel drugs that ameliorate these pathological events is an immediate priority. The study was designed to analyze the possible role of Stevioside, a characteristic sugar from leaves of Stevia rebaudiana (Bertoni) on insulin signaling molecules in gastrocnemius muscle of obesity and hyperglycemia-induced T2DM rats. Adult male Wistar rats rendered diabetic by administration of high fat diet (HFD) and sucrose for 60 days were orally administered with SIT (20 mg/kg/day) for 45 days. Various parameters were estimated including fasting blood glucose (FBG), serum lipid profile, oxidative stress markers, antioxidant enzymes and expression of insulin signaling molecules in diabetic gastrocnemius muscle. Stevioside treatment improved glucose and insulin tolerances in diabetic rats and restored their elevated levels of FBG, serum insulin and lipid profile to normalcy. In diabetic gastrocnemius muscles, Setvioside normalized the altered levels of lipid peroxidase (LPO), hydrogen peroxide (H2O2) and hydroxyl radical (OH*), antioxidant enzymes (CAT, SOD, GPx and GSH) and molecules of insulin signaling including insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt mRNA levels. Furthermore, Stevioside enhanced glucose uptake (GU) and oxidation in diabetic muscles by augmenting glucose transporter 4 (GLUT 4) synthesis very effectively in a similar way to metformin. Results of molecular docking analysis evidenced the higher binding affinity with IRS-1 and GLUT 4. Stevioside effectively inhibits oxidative stress and promotes glucose uptake in diabetic gastrocnemius muscles by activating IR/IRS-1/Akt/GLUT 4 pathway. The results of the in silico investigation matched those of the in vivo study. Hence, Stevioside could be considered as a promising phytomedicine to treat T2DM.  相似文献   

6.
The redox reaction is a normal process of biological metabolism in the body that leads to the production of free radicals. Under conditions such as pathogenic infection, stress, and drug exposure, free radicals can exceed normal levels, causing protein denaturation, DNA damage, and the oxidation of the cell membrane, which, in turn, causes inflammation. Acanthopanax senticosus (A. senticosus) flavonoids are the main bioactive ingredients with antioxidant function. H2O2-treated RAW 264.7 cells and DSS-induced colitis in mice were used to evaluate the antioxidant properties of A. senticosus flavonoids. The results show that A. senticosus flavonoids can significantly downregulate the levels of ROS and MDA in H2O2-treated RAW 264.7 cells and increase the levels of CAT, SOD, and GPx. A. senticosus flavonoids can also increase the body weights of DSS-induced colitis mice, increase the DAI index, and ameliorate the shortening of the colon. ELISA experiments confirmed that A. senticosus flavonoids could reduce the level of MDA in the mouse serum and increase the levels of SOD, CAT, and GPx. Histopathology showed that the tissue pathological changes in the A. senticosus flavonoid group were significantly lower than those in the DSS group. The Western blot experiments showed that the antioxidant capacity of A. senticosus flavonoids was accomplished through the Nrf2 pathway. In conclusion, A. senticosus flavonoids can relieve oxidative stress in vivo and in vitro and protect cells or tissues from oxidative damage.  相似文献   

7.
Queen bee acid or 10-hydroxy-2-decenoic acid (10-HDA) is one of the main and unique lipid components (fatty acids) in royal jelly. Previous studies have demonstrated that 10-HDA has various pharmacological and biological activities. The present study aims to evaluate the anti-tumor effects of 10-HDA alone and combined with cyclophosphamide (CP), as an alkylating agent which widely used for the treatment of neoplastic cancers, against the Ehrlich solid tumors (EST) in mice. Methods: A total of 72 female Swiss albino mice were divided into eight groups. EST mice were treated with 10-HDA (2.5 and 5 mg/kg) alone and combined with CP (25 mg/kg) orally once a day for 2 weeks. Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO) and nitric oxide (NO), antioxidant enzymes (e.g. glutathione reductase (GR), glutathione peroxidase (GPx), catalase enzyme (CAT)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in tested mice. Results: the findings exhibited that treatment of EST-suffering mice with 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) decreased the tumor volume and inhibition rate, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the mice in the C2 group; while 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) improved the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusions: According to the results of the present investigations, 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP showed promising antitumor effects against EST in mice and can be recommended as a new or alternative anticancer agent against tumor; nevertheless, further investigations, particularly in clinical setting, are required to confirm these results.  相似文献   

8.
Irradiation at λ = 507 and 391 nm of [Mo25-C5H5)2(CO)6] in a degassed tetrahydrofuran (THF) or THF-MeOH solution containing nitrite gives [Mo(η5-C5H5)2NO] and several oxo complexes including [{Mo(η5-C5H5)(O)2}2O] in good yields. The quantum yields for the disappearance of [Mo25-C5H5)2(CO)6] in the reaction with NO2 depend on the nitrite concentration, thus suggesting participation of the metal-radical intermediate in the reduction of nitrite. Reactions of [Mo25-C5H5)2(CO)4] with nitrite or nitrate in the dark give the same nitrosyl and oxo complexes as above. An oxygen atom in nitrite or nitrate is mainly transferred onto the molybdenum atom both in the photochemical and the dark reactions.  相似文献   

9.
Ozone (O3) is an oxidating tropospheric pollutant. When O3 interacts with biological substrates, reactive oxygen and nitrogen species (RONS) are formed. Severe oxidative damage exhausts the endogenous antioxidant system, which leads to the decreased activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Curcumin (CUR) is a natural polyphenol with well-documented antioxidant and anti-inflammatory properties. The aim of this work is to evaluate the effects of curcumin on CAT, GPx, and SOD activity and the inhibition of oxidative damage after the acute and chronic exposure to O3. Fifty male Wistar rats were divided into five experimental groups: the intact control, CUR-fed control, exposed-to-O3 control, CUR-fed (preventive), and CUR-fed (therapeutic) groups. These two last groups received a CUR-supplemented diet while exposed to O3. These experiments were performed during acute- and chronic-exposure phases. In the preventive and therapeutic groups, the activity of plasma CAT, GPx, and SOD was increased during both exposure phases, with slight differences; concomitantly, lipid peroxidation and protein carbonylation were inhibited. For this reason, we propose that CUR could be used to enhance the activity of the antioxidant system and to diminish the oxidative damage caused by exposure to O3.  相似文献   

10.
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.  相似文献   

11.
The present study evaluates the regulatory effect of Nano-Curcumin (Nano-CUR) against tartrazine (TZ)-induced injuries on apoptosis-related gene expression (i.e., p53, CASP-3 and CASP-9), antioxidant status, and DNA damages in bone marrow in treated rats. Male rats were arbitrarily separated into five groups, and each group was comprised of 10 rats each. The 1st group served as control (G1). The 2nd group ingested 7.5 mg TZ/kg. b.w. (body weight). The 3rd group ingested Nano-CUR 1 g/kg b.w. The 4th and 5th groups were respectively administered with (1 g Nano-CUR + 7.5 mg TZ/kg. b.w.) and (2 g Nano-CUR + 7.5 mg TZ/kg. b.w.). At the end of the experiment, blood samples, livers, and kidneys were collected. Livers and kidneys were homogenized and used for the analysis of reduced glutathione, malonaldhyde, total antioxidant capacity, lipid peroxide antioxidant enzyme activities, apoptosis-related gene expression, and genotoxicity by comit test. The ingestion of TZ for 50 days resulted in significant decreases in body, and kidney weights in rats and a relative increase in the liver weight compared to control. In contrast, the ingestion of Nano-CUR with TZ remarkably upgraded the body weight and relative liver weight compared to the normal range in the control. Aditionally, TZ ingestion in rats increased the oxidative stress biomarkers lipid peroxide (LPO) and malonaldehyde (MDA) significantly, whereas it decreased the reduced glutathione (GSH) levels and total antioxidant capacity (TAC). Similarly, the levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) significantly deteriorated in response to TZ ingestion. Moreover, the results revealed a remarkable up-regulation in the level of expression for the three examined genes, including p53, CASP-3, and CASP-9 in TZ-ingested rats compared to the control. On the other hand, the comet assay result indicates that the ingestion of TZ induced DNA damage in bone marrow. Notably, the administration of Nano-CUR protected the kidney and liver of TZ-ingested rats as evidenced by a significant elevation in all antioxidant activities of tested enzymes (i.e, SOD, GPx, and CAT), vital recovery in GSH and TAC levels, and a statistical decrease in LPO and MDA compared to TZ-ingested rats. Interestingly, the ingestion of rats with TZ modulates the observed up-regulation in the level of expression for the chosen genes, indicating the interfering role in the signaling transduction process of TZ-mediated poisoning. The results indicate that the administration of Nano-CUR may protect against TZ-induced DNA damage in bone marrow. According to the results, Nano-CUR exerted a potential protective effect against oxidative stress, DNA damage, and the up-regulation of apoptosis-related genes induced by TZ ingested to rats.  相似文献   

12.
《Tetrahedron》2019,75(33):4561-4569
A novel and efficient redox reaction was developed to react 5-amino-1H-pyrazole-4-carbaldehyde with sodium nitrite (NaNO2) in an acidic solution (HCl/MeOH) to generate 5-amino-4-nitrosopyrazole, pyrazole-4-carbaldehyde, or diazenylpyrazole selectively. The results showed that 5-amino-4-nitrosopyrazoles were formed as the major product in the diluted acidic solution (≤2 N HCl in MeOH solution) through redox, formylation, and nitrosation reactions of NaNO2. Intriguingly, pyrazole-4-carbaldehyde was the main product under 6 N HCl in MeOH solution.  相似文献   

13.
Bupropion, an atypical anti-depressant and smoking cessation aid, attenuates complications arising from the activation of inflammatory and oxidative pathways. In this study, the effect of bupropion on an inflammatory and oxidative condition induced by carbon tetrachloride (CCl4) namely cirrhotic cardiomyopathy (CCM) was investigated in rats. CCM was induced by intraperitoneal injection of CCl4 (0.4 g/kg, i.p.). Bupropion was treated orally at doses 30 and 60 (mg/kg, p.o.) for 8 weeks. CCl4 treatment significantly lowered hepatic antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) while enhanced Malondialdehyde (MDA). Elevations in serum nitric oxide (NO) metabolites nitrite/nitrate, and cardiac tumor necrosis factor alpha (TNF-α) and interleukin 1-beta (IL-1β) levels were observed. Cirrhosis also decreased contractility in response to isoproterenol (10?10 to 10?5 M). The spleen weight and intrasplenic pressure increased and QTc, QRS and RR intervals prolonged. Pathological damages in the liver for example focal necrosis, fibrosis and the hepatic blocking increased. On the other hand, bupropion increased GSH, CAT and SOD and lowered MDA. Bupropion reduced NO metabolites and TNF-α levels and decreased IL-1β. The cardiac contractile force improved at maximal effect (Rmax) 10-5 M by bupropion. The intrasplenic pressure was reduced by bupropion. Bupropion reduces QTc, QRS and RR intervals and the liver tissue damages. Bupropion played a cardioprotective role reducing inflammatory and oxidative factors. It may recover the impairment of cardiac contractility and hyperdynamic condition in CCM, and this effect could be mediated at least in part by a NO-dependent mechanism.  相似文献   

14.
Glutathione peroxidase (GPx) is one of the most important antioxidative selenoenzymes in living organisms. The novel GPx mimic 6,6′-ditellurobis(6-deoxy-β-cyclodextrin) (6-TeCD) was prepared and evaluated for its capacity to catalyze the reduction of H2O2, tert-butyl hydroperoxide (t-BuOOH), and cumene hydroperoxide (CuOOH) by glutathione (GSH) or 3-carboxy-4-nitrobenzenethiol (ArSH). Compared the ArSH assay with the coupled reductase assay, we found that 6-TeCD exhibited strong substrate specificity for aromatic thiol substrate. The specificity led to efficient peroxidase activity almost 100,000-fold than that for a well-known GPx mimic diphenyl diselenide (PhSeSePh). Furthermore, reduction of lipophilic CuOOH was proceeded ca. 30 times faster than the more hydrophilic H2O2, which cannot bind into the hydrophobic cavity of β-cyclodextrin. Thus, it seemed that catalytic activity of cyclodextrin-derived GPx models strongly depends on the structurally different both substrates hydroperoxides (ROOH) and thiols.  相似文献   

15.
《Analytical letters》2012,45(8):651-663
Abstract

The nitrite ion oxidizes pyridoxal-5-phosphate-2-pyridyl-hydrazone in acid medium giving a fluorescent product (λex 325 nm, λem 420 nm). This redox reaction is used to developed a spectrofluorimetric method for the determination of nitrite. The calibration graph is liner in the 0.1 ? 1.0 μg mL?1 range. The interference levels, stoichiometry and nature of the reaction have been studied. The method is applied to determine nitrite in water and soil samples  相似文献   

16.
Nanomaterials with enzyme‐like activities (nanozymes) attracts significant interest due to their therapeutic potential for the treatment of various diseases. Herein, we report that a Mn3O4 nanozyme functionally mimics three major antioxidant enzymes, that is, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the multienzyme activity is size as well as morphology‐dependent. The redox modulatory effect of Mn3O4 plays a crucial role in protecting the cells from MPP+ induced cytotoxicity in a Parkinson disease (PD)‐like cellular model, indicating that manganese‐based nanomaterials having multi‐enzyme activity can robustly rescue the cells from oxidative damage and thereby possess therapeutic potential to prevent ROS‐mediated neurological disorders.  相似文献   

17.
Chitosan has attracted much attention as a biomedical material, owing to its unique biological activities. In this study, hepatoprotective effect of β-chitosan obtained from the gladius of squid Sepioteuthis lessoniana was studied against carbon tetrachloride (CCl4)-induced oxidative stress and liver injury in rats. The rats that received β-chitosan along with the administration of CCl4 showed significantly decreased plasma and tissue alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and total cholesterol, triglyceride (TG) and free fatty acid (FFA) contents, whereas the treatment with β-chitosan alone markedly increased rat hepatic and circulatory superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) and reduced glutathione (GSH) levels and decreased the malondialdehyde level. Histopathological observations recommended the marked hepatoprotective effect of β-chitosan. The CCl4-induced alterations on circulatory and hepatic antioxidant defence system were normalised by β-chitosan, and it could be concluded that the hepatoprotective effect of chitosan may be due to its antioxidant and antilipidemic property. Therefore, β-chitosan could be considered as antihepatotoxic agent.  相似文献   

18.
The iodine quenching effect on the fluorescence of a binaphthyl-based amphiphile, C8BNC6N, was used for monitoring the Landolt-type reaction between nitrite, iodide, and thiosulfate. Due to the possibility of iodine detection in the 10–8–10–7 M range, and to the effective concentration of anionic reagents on the surface of cationic aggregates, the indicator reaction can be monitored using reagents at concentration levels as low as 10–7 M. To optimize the analytical system, the effect of pH and reagent concentrations on the rate of indicator reaction were studied. The influence of the matrix of water samples and effect of side-reactions increasing the value of a blank test were examined. A procedure for nitrite determination in water was developed, using the diazo reaction for selective nitrite removal to provide a reference solution, which avoided possible effects of the matrix components. The usefulness of this method was tested by determining trace amounts of nitrite in water samples. The procedure allows determination of nitrite down to 5 ng/ml (detection limit about 2ng/ml) with r.s.d. of 10% in the 20–250 ng/ml range.  相似文献   

19.
This study describes a simple and reliable method for the electrochemical determination of nitrite based on poly(amidoamine)-modified carbon nanotubes. Amine-terminated poly(amidoamine) (generation 4.0, G4-NH4) were covalently attached onto multi-walled carbon nanotube (MWNT)-modified glass carbon (GC) electrodes (written as G4-NH4/MWNT-modified GC) and which were used for the electrochemical determination of nitrite. The studies show that the G4-NH4/MWNT-modified electrodes demonstrated significantly enhanced electrochemical activity towards nitrite oxidation. Chronoamperometry studies reveal that the amperometric response is rapid, stable, and offers a linear dependence over a wide range of nitrite concentrations from 5 μM to 1.5 mM. The proposed method can be used for the continuous monitoring of nitrite in real samples. The electrochemical properties of the G4-NH4/MWNT nanocomposites are reasonably envisaged to be promising for providing a nanostructured platform in the development of electrochemical sensors or biosensors.  相似文献   

20.
Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH4-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH4-N/g MLSS · day (64% NO2-N, 16% NO3-N, and 20% NH4-N). Under 0.039 g NH4-N/g MLSS · day, more NO2-N was transformed to NO3-N with an effluent of 60% NO2-N, 20% NO3-N, and 20% NH4-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH4-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号