首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

2.
The aim of the present study was to determine the chemical composition and antioxidant activity of essential oils (EOs) from two Teucrium polium subspecies, to evaluate, also their antibacterial activities, against some nosocomial-bacteria. The phytochemical screening of essential oils was analyzed using gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry analysis (GC-MS). The antibacterial activities were assessed by disc diffusion method and minimal inhibitory concentration (MIC), against Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Citrobacter koseri and Acinetobacter baumannii) and Gram-positive bacteria Staphylococcus aureus. The antioxidant potential was evaluated in vitro by three assays, namely free radical scavenging activity against 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity. Twenty-six components were identified in the EO of Teucrium polium subsp. aurum representing. Its major component was Caryophyllene (19.13%) followed by γ-Muurolene (13.02%), τ-cadinol, (11.01%), α-Gurjunene (9.2%), Rosifoliol (8.79%), 3-Carene (7.04%). However, twenty two components were identified in the EO of T. polium subsp. polium. Its major components are 3-carene (16.49%), γ-Muurolene (14.03%), α-pinene (9.94%), α-phellandrene (6.93%) and Caryophyllene (7.51%). The antibacterial activity of both essential oils showed a higher activity against tested nosocomial bacteria especially against S. aureus and A. baumannii. The EO of T. polium subsp. aureum showed better antioxidant activity as measured by DPPH and FRAP assays with IC50 values of 3.7 ± 0.2 mg/ml and 2.31 ± 0.11 mg/ml, respectively. The total antioxidant capacity assay showed that T. polium subsp. aureum had a significant activity with value to 3308.27 mg equivalent to ascorbic acid/g of EO. The Moroccan T. polium essential oils could be exploited as an antimicrobial agent for the treatment of several infectious diseases caused by bacteria, especially, those who have developed resistance to conventional antibiotics.  相似文献   

3.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

4.
For thousands of years Pueraria thomsonii Benth has been used to treat a number of diseases in traditional Chinese pharmacopeia. Despite these uses, there is still insufficient information on its biological activity and chemical composition. In this respect, the in vitro callus culture of P. thomsonii was subjected to identify anticancer and antibacterial compounds. Based on significant preliminary cytotoxicity and antibacterial activities; the chemical investigation led to the isolation of isoflavonoids, coumaric acid derivative and dihydroxyflavanone-type of compounds viz., daidzin (1), puerarin (2), biochanin A (3), daidzein (4), p-coumaric acid ethyl ester (5) and liquiritigenin (6), respectively. These compounds were tested for their cytotoxicity and antibacterial activities. Among them, p-coumaric acid ethyl ester (5) exhibited significant cytotoxicity with GI50 values of 14.73, 15.64 and 20.88 μM/mL against 4T1, NC1-H1975 and A549, respectively; the other isoflavones and aflavonoid showed moderate to weak activities. Moreover, p-coumaric acid ethyl ester (5) inhibited the growth of K. pneumonia, MRSE and MRSA at very low MIC values of 6.01, 12.01 µg/mL 24.02, respectively. On the other hand compounds biochanin A (3) and liquiritigenin (6) showed moderate antibacterial activity. Because of the potential anticancer and antibacterial activities of bioactive compounds from P. thomsonii, they can be used to treat various cancer and emerging bacterial infections.  相似文献   

5.
Alsophila spinulosa is a tree-like fern, and many evidences suggested that plant polyphenols had the potential therapeutic for Alzheimer s disease (AD). Herein, polyphenols (ASP) was isolated from A. spinulosa leaves and its major constituent were isoorientin and vitexin. ASP displayed excellent antioxidant activity and obvious anti-lipid peroxidation capacity in vitro. ASP improved the survival rate of C. elegans under high temperature by enhancing the antioxidant enzymes activities and decreasing the lipid peroxidation level. Moreover, ASP alleviated β-amyloid (Aβ) induced paralysis and reduced Aβ deposition, decreased reactive oxygen species (ROS) accumulation and improved the level of skn-1 mRNA. In addition, ASP decreased the levels of pdk-1 and akt-1 mRNA in P13K/AKT signaling pathway. In conclusion, ASP may be a potential ingredient for the alleviation of AD.  相似文献   

6.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

7.
The purpose of this study was to illustrate the mechanism of “enzyme inactivation and toxicity reduction” of Fructus Tribuli (FT) after being heating processed. Ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was used to quantitatively analyze the contents of four steroidal saponins in crude Fructus Tribuli (CFT) and stir-fried Fructus Tribuli (SFT) under different storage times at room temperature. The enzyme activity of β-D-glucosidase in CFT and SFT were determined and calculated by ultraviolet–visible spectrometry (UV-VIS spectrometry). In addition, the enzyme hydrolysates of FOT and tribuluside A were qualitatively analyzed by ultra-high-performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The hepatorenal toxicity of spirostanol saponins in FT were further confirmed by in vivo and in vitro experiment. This study confirmed that “enzyme inactivation and toxicity reduction” was one of the reasons why the stir-frying can reduce hepatorenal toxicity of FT, and further enriched the exploration on the mechanism of processing toxicity reduction.  相似文献   

8.
Several metal-based nanoparticles (NPs) have been found to be toxic and are known to exert adverse health outcomes with irreversible side effects. This highlights the need to discover effective, stable, and biocompatible therapeutic components using natural sources. Here, a hexane extract of Nigella sativa seeds was used to synthesize iron oxide NPs (NS-IONPs) embedded with N. sativa phytoconstituents. The extract acted as a reducing agent that restricted the size of the NS-IONPs to 5–6 nm, signifying the potential to be cleared through the renal system. The fabricated NS-IONPs had a prominent effect on pathogenic gram-negative bacteria, E. coli (19.3 mm) and Salmonella typhi (14.2 mm) and lung cancer cells (lowest IC50 of 18.75 µg/mL) mainly by binding to the phospholipid components of the cell membrane. This resulted in cell shrinkage and further inhibited cell growth. Transmission electron microscopy analyses revealed that the mechanisms of cellular NP uptake varied depending on the cell type. Accumulation of NS-IONPs inside the cell increased BAX expression and arrested the cells at the G0/G1 phase, thereby conspicuously extending the G0 phase to initiate necrosis. Thus, these finding suggest that the synthesized NS-IONPs exhibited high antibacterial activity and effective cytotoxicity against cancer cell lines A549 and HCT116 compared to IONPs. The innovation of the current study is that the biogenic fabrication of IONPs is simple and cost effective results in stable nanomaterial, NS-IONPs with potential antibacterial and anticancer activity, which can be explored furthermore for various biomedical applications.  相似文献   

9.
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity.  相似文献   

10.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

11.
Psidium guajava L., commonly known as guava is an important tropical food plant with diverse medicinal values. In traditional medicine, it is used in the treatment of various diseases such as diarrhoea, diabetes, rheumatism, ulcers, malaria, cough, and bacterial infections. The aim of this review is to provide up-to-date information on the ethnomedicinal uses, bioactive compounds, and pharmacological activities of P. guajava with greater emphasis on its therapeutic potentials. The bioactive constituents extracted from P. guajava include phytochemicals (gallic acid, casuariin, catechin, chlorogenic acid, rutin, vanillic acid, quercetin, syringic acid, kaempferol, apigenin, cinnamic acid, luteolin, quercetin-3-O-α-L-arabinopyranoside, morin, ellagic acid, guaijaverin, pedunculoside, asiastic acid, ursolic acid, oleanolic acid, methyl gallate and epicatechin) and essential oils (limonene, trans-caryophyllene, α-humulene, γ-muurolene, selinene, caryophyllene oxide, bisabolol, isocaryophyllene, δ-cadinene, α-copaene, α-cedrene, β-eudesmol, α-pinene, β-pinene, β-myrcene, linalool, α-terpineol and eucalyptol). In vitro and in vivo studies demonstrated that P. guajava possesses pharmacological activities such as antidiabetic, antidiarrhoeal, hepatoprotective, anticancer, antioxidant, anti-inflammatory, antiestrogenic, and antibacterial activities which support its traditional uses. The exhibited pharmacological activities reported may be attributed to the numerous bioactive compounds present in different parts of P. guajava. Based on the beneficial effects of P. guajava as well as its bioactive constituents, it can be exploited in the development of pharmaceutical products and functional foods. However, there is a need for comprehensive studies in clinical trials to establish the safe doses and efficacy of P. guajava for the treatment of several diseases.  相似文献   

12.
IntroductionScientific evidence about biological profile of natural products can support their traditional uses. The current work was aimed to assess phytochemical and biological profile of nine medicinal plants collected from Herbalists.MethodsExtracts prepared in different solvents were subjected to phytochemical, antioxidant, enzyme inhibitory, cytotoxic, and antimicrobial activities. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis was performed for the quantification of polyphenols.ResultsResults showed methanol extract (M) being potent as compared to others. Gentian lutea M showed maximum extract recovery (15.00 ± 0.11 % w/w) and TFC (30.82 ± 0.21 μg QE/mg extract). Nigella sativa M displayed highest TPC (44.99 ± 0.43 μg GAE/mg extract) and TAC (334.72 ± 0.35 μg AAE/ mg extract). Results showed noteworthy quantities of vanillic acid, rutin, kaempferol, emodin in ethyl acetate (EA) and methanol (M) extracts of plants assessed by RP-HPLC. Gentisic acid was highest (11.75 µg/mg extract) in T. arjuna M extract. Similarly, maximum %FRSA (82.28 ± 0.03 %) and TRP (160.40 ± 0.38 μg AAE/ mg extract) were depicted by Terminalia chebula and Chamomilla recutita, respectively. Moreover, Mentha longifolia and G. lutea M demonstrated noteworthy (p < 0.05) antibacterial activity against Staphylococcus aureus (14 ± 0.7 mm) and Klebsiella pneumoniae (12 ± 0.3 mm), respectively. Curcuma amada, C. recutita, Murraya koenigii and G. lutea M had significant α-glucosidase activity. Another good solvent for extraction was ethyl acetate (EA), whose extracts were secondary to methanol in producing significant biological profile. For example, EA of N. sativa (TPC: 1.46 ± 0.45 µg GAE/ mg extract), G. lutea (TRP: 160.33 ± 0.52 μg AAE/mg extract: ZOI of 12 ± 0.5 mm in K. pneumoniae) and Mormodica charantia (α-amylase inhibition: 39.5 ± 0.10 %) showed significant bioactivities. All extracts displayed mild antifungal protein kinase inhibition activities and were significantly (greater than80 %: p < 0.05) cytotoxic to brine shrimps with negligible hemolytic activity.ConclusionBriefly, variable polarity solvent extracts of studied plants will be processed for isolation of antioxidant, cytotoxic, carbohydrate enzyme inhibitory and antibacterial compounds.  相似文献   

13.
Double transesterification from vegetable oils could play an important role in biodiesel and biolubricant production, with the possible implementation of biorefineries to replace refineries based on petroleum. The oxidative stability of the original sample will influence the quality of the intermediate and final products, recommending highly stable raw materials or the use of antioxidants to keep quality parameters during storage. The aim of this work was to obtain a stable biolubricant, assessing its production through a double transesterification with methanol and pentaerythritol from high-oleic safflower oil and adding antioxidants, paying attention to quality parameters. Consequently, a biorefinery that produced high-quality products was proposed. In conclusion, high biodiesel and biolubricant yields were obtained (>97 and >94%, respectively) with the following chemical conditions for the latter: FAME/alcohol ratio, 1:0.33; pressure, 260 mmHg; catalyst concentration, 1.0%; temperature, 160 °C. The oxidative stability of biodiesel complied with the standard (10.78 h) due to its high methyl oleate content (exceeding 80%), whereas this parameter was shorter for the biolubricant (2.86 h), possibly due to its molecular structure. Consequently, antioxidant addition was needed, and tert-Butylhydroquinone at low concentration (500 ppm) kept viscosity and acid number of high-oleic safflower biolubricant during oxidation conditions (up to 8 h). However, tannic acid did not keep these properties in biolubricant. In conclusion, by using the right antioxidant, all the products of the proposed biorefinery were stable during oxidizing conditions, making this biorefinery more competitive.  相似文献   

14.
In present study, an investigation was carried out to develop and validate an analytical method for the selective extraction and determination of griseofulvin (GSF) from plasma samples. For this purpose, a rational approach was made to synthesize and characterize the surface molecularly imprinted polymers (SMIPs). The SMIPs were utilized as solid phase extraction (SPE) sorbents. The SMIPs were prepared by using GSF as template molecule on the surface of modified silica particles through a non-covalent technique. The particles demonstrated high adsorption capacity (119.1 µg/mL), fast adsorption equilibrium time (30 min) and good recognition selectivity for the template drug. The scanning electron microscopy and infrared spectroscopy were used to explain the structural and morphological characteristics of the SMIPs and surface non-imprinted polymers. The SPE method was combined with HPLC for plasma analysis. The method validation results demonstrated that the established method possessed good linearity for GSF ranging from 0.1 to 50 µg/mL (R2 = 0.997). The limit of detection for this method was 0.02 µg/mL for rat plasma samples. The recoveries of GSF from spiked plasma samples were (90.7–97.7%) and relative standard deviations were (0.9–4.5%). Moreover, the SMIPs as selective SPE sorbent can be reused more than 8 times which is a clear advantage over commercial SPE sorbents. Finally, the usefulness of the proposed strategy was assessed by extraction and detection of GSF in real rat plasma samples.  相似文献   

15.
Cryptosporidiosis is a global zoonotic infection that causes water-borne epidemics of diarrhea. Nevertheless, there are few available therapies for cryptosporidiosis. However, the gold standard drug nitazoxanide (NTZ) has limited efficacy in malnourished and immunocompromised patients. Furthermore, Verbena officinalisL. is a herbal plant widely used in traditional medicine to cure several health disorders and is recognized to possess numerous therapeutic applications. In the present study, the phytochemical composition of aerial part extract from Verbena officinalis was investigated via LC-ESI-MS/MS.Furthermore, the anti-cryptosporidial activity was also performed using an animal model. Fifty mice were divided into 5 groups; GI: non-infected (Negative control), GII: infected non treated (positive control), GIII: infected, treated with NTZ, GIV: infected, treated with V. officinalis n-butanol extract, GV: infected, treated with a combination of NTZ and V. officinalis. Parasitological examination revealed a highly significant difference (P-value < 0.001) between GIII, GIV, and GV compared to GII regarding the mean number of Cryptosporidium spp. oocyst in the stool. Moreover, GV showed the best efficacy with a percentage of 87%. Also, histopathological examination showed variable degrees of improvement in the villous broadening, and the inflammatory infiltrates in the small intestine with a reduction of hepatocyte degeneration and mononuclear infiltration in GIII, GIV, and GV compared to GII, with the best results seen in GV. Additionally, the chemical profiling of n-butanol extract identified 16 secondary metabolites comprising flavonoids, phenolic acids, phenylethanoids, and coumarins. In conclusion, V. officinalis is an intrinsic supplier of biologically active metabolites with outstanding anti-parasitic and possible anti-inflammatory effects.  相似文献   

16.
Trichinella spiralis is an intestinal and tissue parasitic nematode, emerging and re-emerging causative agent of a serious foodborne parasitic infection. This study aimed to evaluate the effect of Luffa aegyptiaca leaf extract and its triterpene glycosides on the intestinal and muscle stages of T. spiralis infection in vitro and in vivo. Phytochemical investigations of the extract led to the isolation of five compounds, namely (1) 3-O-β-d-glucopyranosyl-16-O-β-hydroxyolea12-en 23, 28-β-d-diglucopyranoside ester, (2) 3β-hydroxylolea12-en-28-oic acid (Oleanoic acid), (3) oleanolic acid 3-O-α-l-rhamnopyranosyl-(1 → 4)-β-d-glucopyranoside, (4) 3-O-β-d-glucopyranosyl-28-β-d-glucopyranosyl oleanolate, and (5) stigmast-5, 22-dien-3-O-β-d-glucopyrano-side. Moreover, the in vitro study showed marked degeneration and destruction of adult worms and larval teguments with tested drugs. Also, in the in vivo study, mice were divided into six groups; group I: infected and untreated, group II: received leaf extract as prophylaxis, group III: infected and treated with leaf extract, group IV: treated with compound (4), group V: treated with compound (1), and group VI: treated with albendazole. Furthermore, the treatment efficacy was assessed by the adult and total larval counts, histopathological study of the small intestinal and muscle tissues, and immunohistochemical staining of CD34 in muscles. The results revealed a significant reduction of total adult and larval counts in prophylactic and treated groups compared to the positive control group, with a reduction of total adult count by 63.48% and 74.4% in compound (1) and compound (4) treated groups, respectively. Also, a reduction was detected in larval counts by 36.5%, and 93.6% in compound (1) and compound (4) treated groups during both the muscular and intestinal phases, respectively.Additionally, histopathological examination of the small intestine and muscles showed marked improvement with a reduction in the inflammatory infiltrates in treated groups. CD34 expressions were reduced in treated groups with more reduction in compound (4) treated group. In conclusion, this study implies that L. aegyptiaca leaf extract and its tested triterpene glycosides might be used for anti-trichinellosis treatments.  相似文献   

17.
18.
Justicia vahlii Roth. (acanthaceae) is an important medicinal food plant used in pain relief and topical inflammation. The present study aimed to evaluate phytochemical composition, toxicity, anti-inflammatory, antioxidant and enzyme inhibition potential of n-butanol extract of J. vahlii (BEJv). The extract prepared through maceration was found rich in total phenolic contents (TPC) 196.08 ± 6.01 mg of Gallic acid equivalent (mg GAE/g DE) and total flavonoid contents (TFC) 59.08 ± 1.32 mg of Rutin equivalent (mg RE/g DE). The UPLC-Q-TOF-MS analysis of BEJv showed tentative identification of 87 compounds and 19 compounds were detected in GC–MS analysis. The HPLC-PDA quantification showed the presence of 14 polyphenols amongst which kaempferol (3.45 ± 0.21 µg/ mL DE) and ferulic acid (2.31 ± 1.30 µg/ mL DE) were found in highest quantity. The acute oral toxicity study revealed the safety and biocompatibility of the extract up to 3000 mg/kg in mice. There was no effect of BEJv on human normal liver cells (HL 7702) and very low cytotoxic effect on liver cancer cells (HepG2) and breast cancer cells (MCF-7). In anti-inflammatory evaluation, the BEJv treated groups showed significant inhibition (p < 0.001) of late phase carrageenan induced paw edema at 400 mg/kg and increased the levels of oxidative stress markers; catalase, superoxide dismutase (SOD) and glutathione (GSH) while decreased the inflammatory markers; interleukin-1beta (IL-β) and tumor necrosis factor alpha (TNF-α) in paw tissue of mice. BEJv displayed highest results in Ferric reducing antioxidant power (FRAP) assay 97. 21 ± 2.34 mg TE (trolox equivalent)/g DE, and highest activity 3.32 ± 0.31 mmol ACAE (acarbose equivalent)/g D.E against α-glucosidase. Docking study showed good docking score by the tested compounds against the various clinically significant enzymes. Conclusively the current study unveiled J. vahlii as novel non-toxic source with good antioxidant-mediated anti-inflammatory potential which strongly back the traditional use of the species in pain and inflammation.  相似文献   

19.
This review critically evaluates the plastic accumulation challenges and their environmental (primarily) and human (secondarily) impacts. It also emphasizes on their degradation and fragmentation phenomena under marine conditions. In addition, it takes into account the leachability of the various chemical substances (additives) embedded in plastic products to improve their polymeric properties and extend their life. Regardless of their effectiveness in enhancing the polymeric function of plastic products, these additives can potentially contaminate air, soil, food, and water. Several findings have shown that, regardless of their types and sizes, plastics can be degraded and/or fragmented under marine conditions. Therefore, the estimation of fragmentation and degradation rates via a reliable developed model is required to better understand the marine environmental status. The main parameter, which is responsible for initiating the fragmentation of plastics, is sunlight/UV radiation. Yet, UV- radiation alone is not enough to fragment some plastic polymer types under marine conditions, additional factors are needed such as mechanical abrasion. It should be also mentioned that most current studies on plastic degradation and fragmentation centered on the primary stages of degradation. Thus, further studies are needed to better understand these phenomena and to identify their fate and environmental effects.  相似文献   

20.
Bacterial cellulose (BC), derived from kombucha scoby have extraordinary organoleptic properties suitable for development of leather-like materials. An improvement in physical and mechanical property is desirable for the practical applications. This work deals with the treatment of BC by incorporations of three different nanomaterials such as gold nanoparticles (AuNP), silver nanoparticles (AgNP) and graphene oxide (GO). Achieving combined benefits via synergic interactions of different nanomaterials is the major objective herein. While graphene oxide can influence some of the parameters related to mechanical properties, silver nanomaterials can offer antibacterial characteristics. Gold nano materials can bridge the BC/silver/graphene oxide as well as provide the desirable aesthetic colour. Different physical chemical and mechanical characteristics were studied in detail. For example, changes in morphology by imaging fiber network were studied using scanning electron microscopy. Fibre properties were studied by Small Angle X-Ray Scattering (SAXS) and X-Ray Diffraction (XRD). Elemental composition was studied by X-ray photoelectron spectroscopy (XPS) analysis and Raman analysis. The improvement of hydrophobicity was studied by Contact angle meter. Thermal analysis was performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). A Picture was provided in ESI to show the modified material's leather-like appearances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号