首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
无陀螺仪惯性系统构型中安装误差分析与标定   总被引:4,自引:0,他引:4  
针对一种立方构型的无陀螺仪惯性系统,分析了构型安装误差对惯性系统测量精度的影响及构型误差的标定方法。首先分析了立方构型下载体姿态与加速度的解算方法,然后给出了安装误差对于系统输出的影响,最后通过分析安装误差的敏感性因子给出了一种有针对性的标定方法。理论分析与仿真计算表明,惯性系统角速度与线速度输出是加速度计输出的线性组合,构型安装误差对无陀螺仪惯性系统测量精度的影响非常明显,在给出的标定方案中,方向安装误差标定精度较位置安装误差要高,而且转台角速度对位置安装误差的标定精度影响很大,对方向安装误差影响较小;无陀螺仪惯性系统中安装误差不可忽略,必须进行标定,据此提出的一种标定方案简单、切实可行。  相似文献   

2.
为尽可能消除IMU安装误差和陀螺漂移对系统精度的影响,运用主从惯导传递对准技术,采用扩展状态滤波器和速度/姿态角组合匹配的方法,估计出IMU安装误差和陀螺漂移误差,并对系统进行补偿。仿真结果表明,补偿了安装误差和陀螺漂移后,捷联惯性系统的导航参数精度可提高1个数量级以上。  相似文献   

3.
针对惯性平台系统多位置自标定的误差系数个数还较少的现状,提出了一种平台十六位置自标定方案。通过对惯性平台系统惯性器件输出误差模型和惯性器件安装误差的详细分析,推导出了包含51项误差参数的平台系统误差模型。结合方程组有最小二乘解的理论,提出了适合平台多位置自标定系统的可观测性分析方法,并以此为指导,提出了平台多位置自标定系统的优化指标。根据此指标,结合平台信息矩阵的特点,得到了一种最优位置组合的数值搜索算法,并得到十六位置自标定方案。仿真结果显示,此十六位置自标定方案可以较高精度的估计出平台系统的全部51项误差参数。研究结果表明,用尽可能少的位置来高精度的辨识出尽可能多的平台误差参数是可实现的。  相似文献   

4.
针对惯导平台连续翻滚自标定中安装误差标定精度不高这一现状,提出了一种解决方案。通过对惯性器件的输出误差模型和安装误差的分析,建立了系统的姿态动力学方程和观测方程,利用输出灵敏度理论分析了系统的可观性,指出加速度计安装误差可观性较差是影响标定精度的主要原因。利用Kalman滤波中的估值方差矩阵计算了安装误差之间的相关系数,计算结果表明可观性差是由安装误差之间的线性相关性造成的,并确定了具体的不可观参数。以加速度计输入轴为基准建立平台坐标系可以减少安装误差项,使所有的安装误差的变得可观。最后的仿真结果表明在新的方案下,安装误差的估值偏差小于5",标定精度得到了显著提高。  相似文献   

5.
混合式光纤陀螺惯导系统在线自主标定   总被引:1,自引:0,他引:1  
混合式光纤陀螺惯导系统IMU的安装误差、光纤陀螺的漂移及标度因数等参数会随着时间发生变化,对系统误差产生影响,使系统在使用一段时间之后精度发生变化,因而需要重新标定。在混合式系统中,通过台体旋转调制,惯性元件常值漂移误差对系统的影响得到抑制,但安装误差和标度因数误差对系统的影响无法得到完全调制,这些误差会与地速及旋转角速率耦合,引起锯齿形速度误差,降低了系统的各项性能。针对混合式惯导系统,建立了IMU误差模型,设计出一种在线自主标定方法,并进行了可观性分析。该方法采用"速度+位置"匹配,对惯导系统30项相关误差项进行在线标定。系统实验结果表明,系统级在线标定参数较分立式标定参数在导航定位精度上提高了半个数量级。  相似文献   

6.
惯性平台自标定的标定方案设计目前多是依靠经验人为设计,而没有比较系统的标定方案设计方法,为解决此问题,提出了一种基于D-最优理论的惯性平台自标定方案设计方法。首先分析给出了包含36个待估计参数的平台系统误差模型;然后以陀螺仪和加速度计的输出模型为回归模型,将惯性平台自标定看作一个广义的多元回归问题,以D-最优理论为优化准则,提出了并行设计和串行设计两种标定方案设计思路。将得到的优化方案与传统的十六位置标定方案进行了仿真对比分析,仿真结果表明:优化方案的陀螺仪误差系数、加速度计误差系数和加速度计安装误差系数标定相对误差都在1%以下,与传统十六位置标定方案的标定精度相当;但优化方案的陀螺仪安装误差标定相对误差在5%左右,远远优于传统十六位置标定方案25%的相对误差;而且优化方案的标定位置更少,能够减少标定时间,验证了标定方案设计思路的正确性。  相似文献   

7.
一种惯性测量单元非正交安装的单轴转位方法   总被引:1,自引:0,他引:1  
针对单轴旋转式捷联惯导系统中旋转轴方向惯性器件误差导致系统误差积累的问题,提出一种惯性测量单元非正交安装的单轴转位方法,该方法不但可消除旋转轴垂直方向惯性器件误差对导航精度的影响,而且可减小旋转轴方向惯性器件误差引起的导航误差。基于单轴旋转调制原理,推导了非正交安装方法和正交安装方法的陀螺常值漂移和加速度计零偏在单轴旋转下引起的姿态误差,并对其进行分析,结果表明,在陀螺仪和加速度计常值漂移及零偏相同的情况下,非正交安装方法与正交安装方法相比,安装斜角为10°时72 h的定位误差降低约50%。  相似文献   

8.
在双轴旋转式SINS中,惯性元件常值漂移误差对系统的影响可以得到调制,但安装误差和标度因数误差对系统的影响无法得到调制,同时这些误差会与旋转角速率耦合,引起速度锯齿波等误差从而降低了系统的各项性能指标。为了减少这种影响,分析了光学陀螺双轴旋转式SINS误差传播特性,利用奇异值分解法对系统的可观测程度进行了分析,经分析,与转动轴相关的安装误差和标度因数误差的可观测度较好,据此设计了系统的自主标定方案及滤波算法,进行了数字仿真和半实物仿真验证试验。试验结果表明,利用设计的自主标定方案,在1 h内能估计出转轴上两个陀螺的标度因数误差及与转轴相关的四个安装误差,估计精度能达到95%以上。导航试验验证表明,利用自主标定的参数,相对于传统标定方法,使系统定位精度提高了20%。  相似文献   

9.
激光陀螺捷联惯性导航系统的误差参数标定   总被引:3,自引:0,他引:3  
惯性器件标定一般都必须对北和调平,以消除地速及重力加速度的影响,但是不适合在靶场及其它野战环境下。根据激光捷联惯导系统的误差方程,在激光捷联惯性组合不水平指北情况下,通过12位置的标定方法,抵消地速及重力加速度的影响,从而得出加速度计的误差参数和激光陀螺的常值漂移;然后通过单轴转台,标定出陀螺的安装误差和标度因数;最后分别在引北调平和在不水平指北的12位置下对激光捷联组合进行标定,并对实验精度进行对比,两者误差比较小,认为此方法可以满足激光陀螺捷联系统的标定要求。本方案利用最少的测试位置,得到了所有需要的信息,利用率高。  相似文献   

10.
激光陀螺惯性测量单元系统级标定方法   总被引:1,自引:0,他引:1  
传统的分立标定方法必须依靠高精度的转台提供姿态基准,不满足带减振器的惯性测量单元(IMU)和现场标定需求.首先建立了附加约束条件的陀螺和加速度计安装坐标系数学模型,根据陀螺和加速度计的输出误差方程,从惯性导航基本误差方程出发推导了惯性测量单元的系统级误差参数标定Kalman滤波模型,该模型包含了陀螺和加速度计零偏、比例因子、安装误差在内共21维标定误差状态变量,且仅以速度解算误差为观测量.依据所建立的模型和设计的标定路径对此系统级标定方法进行了仿真,仿真结果表明,陀螺和加速度计零偏估计精度分别优于0.005°/h和0.005 mg,安装误差估计精度优于1″,比例因子误差优于1ppm,满足高精度惯导系统的标定需求.  相似文献   

11.
旋转式光纤捷联惯导系统的误差效应研究关乎系统的设计和精度的提高.在建立惯性元件误差模型的基础上,分析了系统的旋转调制原理,推导了惯性元件的零偏、安装误差、标度因数误差和随机误差在单轴单方向旋转下产生的误差效应,仿真研究了转速大小对系统精度的影响.结果表明,旋转调制可以有效补偿与转动轴垂直方向惯性元件的零偏,且转速越大效果越好;旋转调制会引入额外的标度因数误差效应,且转速越大误差越大.在设计旋转式捷联惯导系统时,要求惯性元件的标度因数误差和安装误差尽可能小,并且转速不宜过大,采取正反旋转相结合的方式可以取得更显著的误差补偿效果.  相似文献   

12.
战车用惯性定位定向系统由于采用双轴陀螺平台结构,不可避免地存在着支架误差,从而影响系统航向精度。应用球面三角法和方向余弦矩阵法分别推导出双轴陀螺平台的支架误差公式,发现由这两种方法推导出来的公式计算结果是一致的。最后通过数学仿真和分析,给出了支架误差与载体的姿态角之间的定量关系。根据此误差公式,对惯性定位定向系统的航向输出能够进行误差补偿,从而保证了动态条件下定位定向系统的航向输出精度。  相似文献   

13.
对于目前的级联式SINS/GNSS组合导航系统来说,其卡尔曼滤波器的输出校正方式不能深入到捷联解算内部,无法抑制平台姿态误差的发散,也无法校正惯性器件误差,因而在该方式长时间运行不能控制滤波发散,导舷精度随时间下降。为此设计了一种SINS/GNSS级联闭环反馈式组合导航系统,该系统能对SINS的位置、速度误差、平台误差及惯性器件误差作出最优估计并实施反馈。通过仿真证明:该系统不仅能提高导航解的精度,还在校准的同时具有动机座对准能力,满足了长时间导航定位的稳定性。  相似文献   

14.
本文阐述了惯性平台温控系统温度控制精度和平台内温度场分布的均衡性对惯性导航系统精度的影响,着重介绍了惯性平台温控系统精度的控制技术,并且对惯性平台稳态加热功率进行了工程计算。  相似文献   

15.
为了解决大失准角条件下的捷联惯导初始自对准问题,通过分析捷联惯导系统大失准角误差模型,利用平台惯导系统罗经对准原理,提出了一种新的捷联惯导系统罗经对准方案。该方案的具体实现划分为三个阶段:方位角未知情况下的水平对准;大失准角时变参数罗经方位对准;定参数罗经对准。该方案通过实时调节罗经参数缩短了对准时间;利用大方位失准角模型代替小失准角模型,在算法收敛阶段更加准确地描述了捷联惯导系统的误差传递方式。仿真试验表明,使用陀螺随机漂移稳定性为0.01(°)/h的捷联惯导系统,该对准方案能在60 s内方位精度到达1°,并能在对准结束时达到3’的方位对准精度。  相似文献   

16.
惯导平台温度的单片机 PWM 控制系统   总被引:5,自引:0,他引:5  
本文介绍了惯导平台温度的单片机PWM控制系统。文中论述了系统组成、控制原理、数学模型、算法软件等。本系统具有多点测温与控温、温控精度高、系统品质好、抗干扰性强、能进行误差校正、参数最优整定等特点。  相似文献   

17.
旋转调制技术在调制惯性器件常值误差,有效提高惯导系统长航时导航精度的同时,也引入了由系统旋转而造成的速度误差以旋转周期和旋转周期二倍频波动,这种波动对以速度为匹配量的传递对准有一定的影响。从旋转调制系统的误差特性出发,分析了旋转调制对以速度为匹配量传递对准的有利和不利影响,并针对不同的旋转调制周期进行了仿真验证,仿真结果表明当旋转周期远大于舒勒周期时,旋转调制引起的不利和有利影响都很小,可忽略不计;当旋转周期远小于舒勒周期时,旋转调制可提高子惯导的方位对准精度,但延长了系统的传递对准时间。例如,当旋转周期为3(°)/s时,水平对准时间由3 min延长到4 min,而对准精度由1.2′提高到0.2′;方位对准时间由10 min延长到16 min,而对准精度由2.2′提高到0.4′。  相似文献   

18.
惯性平台误差快速自标定技术   总被引:12,自引:1,他引:12  
误差标定及补偿是提高惯性系统实用精度的重要手段。惯性平台借助自身框架的转动及锁定功能可以实现自主误差标定,为载体的机动性和制导/导航精确性创造了条件。但标定的完善性与快速性之间存在矛盾。本针对一种三轴平台设计了一个十六位置误差标定及自主对准一体化方案,可以分离出总计42项误差,其中包括自主确定方位。占用时间约70分钟,在标定完善性与快速性之间达到了较合理地折衷,在实用中取得了良好的效果。  相似文献   

19.
GPS/INS 组合导航系统降阶滤波器设计   总被引:1,自引:0,他引:1  
本文研究了某型号飞机上GPS/平台惯性组合导航系统中降阶卡尔曼滤波器的设计方法;提出一种降阶滤器结构,并讨论了模型误差的伪随机噪声补偿方法。采用蒙特—卡洛分析法对降阶滤波器的实际误差进行了数字仿真,结果表明,本文提出的这种降阶滤波器能保证组合系统的导航精度,而且具有实际使用价值  相似文献   

20.
为提高车辆导航系统的精确度和可靠性,提出一种车辆动力学模型辅助惯性导航系统的方法。建立车辆非线性动力学模型,利用四阶龙格库塔法实时解算速度信息。以惯导误差方程为状态方程,动力学模型与惯性导航解算的速度差为观测量,设计了容积卡尔曼滤波器,并用估计的状态误差对惯导进行校正。仿真结果表明,所提出的利用车辆动力学模型辅助惯导的方法能有效抑制惯导误差的发散,位置精度和速度精度比纯惯导系统提高了一个数量级,航向角精度提高了73%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号