首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Rogue waves are giant nonlinear waves that suddenly appear and disappear in oceans and optics. We discuss the facts and fictions related to their strange nature, dynamic generation, ingrained instability, and potential applications. We present rogue wave solutions to the standard cubic nonlinear Schrödinger equation that models many propagation phenomena in nonlinear optics. We propose the method of mode pruning for suppressing the modulation instability of rogue waves. We demonstrate how to produce stable Talbot carpets—recurrent images of light and plasma waves—by rogue waves, for possible use in nanolithography. We point to instances when rogue waves appear as numerical artefacts, due to an inadequate numerical treatment of modulation instability and homoclinic chaos of rogue waves. Finally, we display how statistical analysis based on different numerical procedures can lead to misleading conclusions on the nature of rogue waves.

  相似文献   

2.
A method for solving equations that describe the dynamics of wave packets of the Tollmien–Schlichting waves in the boundary layer is proposed. The method of splitting the initial problem into the linear and nonlinear parts at each time step is used. The linear part is resolved by using an equation for spectral components of the wave packet with a subsequent Fourier transform from the space of wavenumbers to the physical space. A system of ordinary differential equations is solved in the physical space. The Fourier transform is performed by means of the library procedure of the fast Fourier transform. As examples, the problems solved were the linear dynamics of the wave packet concentrated in the vicinity of the instability region (i.e., a set of wave vectors in the space of wavenumbers for which the imaginary part of the eigenfrequency of the Tollmien–Schlichting waves is positive) and the nonlinear dynamics of the wave packet overlapping the instability region.  相似文献   

3.
Rogue waves in random sea states modeled by the JONSWAP power spectrum are high amplitude waves arising over non-uniform backgrounds that cannot be viewed as small amplitude modulations of Stokes waves. In the context of Nonlinear Schrödinger (NLS) models for waves in deep water, this poses the challenge of identifying appropriate analytical solutions for JONSWAP rogue waves, investigating possible mechanisms for their formation, and examining the validity of the NLS models in these more realistic settings. In this work we investigate JONSWAP rogue waves using the inverse spectral theory of the periodic NLS equation for moderate values of the period. For typical JONSWAP initial data, numerical experiments show that the developing sea state is well approximated by the first few dominant modes of the nonlinear spectrum and can be described in terms of a 2- or 3-phase periodic NLS solution. As for the case of uniform backgrounds, proximity to instabilities of the underlying 2-phase solution appears to be the main predictor of rogue wave occurrence, suggesting that the modulational instability of 2-phase solutions of the NLS is a main mechanism for rogue wave formation and that heteroclinic orbits of unstable 2-phase solutions are plausible models of JONSWAP rogue waves. To support this claim, we correlate the maximum wave strength as well as the higher statistical moments with elements of the nonlinear spectrum. The result is a diagnostic tool widely applicable to both model or field data for predicting the likelihood of rogue waves. Finally, we examine the validity of NLS models for JONSWAP data, and show that NLS solutions with JONSWAP initial data are described by non-Gaussian statistics, in agreement with the TOPEX field studies of sea surface height variability.  相似文献   

4.
This paper concerns long time interaction of envelope solitary gravity waves propagating at the surface of a two-dimensional deep fluid in potential flow. Fully nonlinear numerical simulations show how an initially long wave group slowly splits into a number of solitary wave groups. In the example presented, three large wave events are formed during the evolution. They occur during a time scale that is beyond the time range of validity of simplified equations like the nonlinear Schrödinger (NLS) equation or modifications of this equation. A Fourier analysis shows that these large wave events are caused by significant transfer to side-band modes of the carrier waves. Temporary downshiftings of the dominant wavenumber of the spectrum coincide with the formation large wave events. The wave slope at maximal amplifications is about three times higher than the initial wave slope. The results show how interacting solitary wave groups that emerge from a long wave packet can produce freak wave events.Our reference numerical simulation are performed with the fully nonlinear model of Clamond and Grue [D. Clamond, J. Grue, A fast method for fully nonlinear water wave computations, J. Fluid Mech. 447 (2001) 337–355]. The results of this model are compared with that of two weakly nonlinear models, the NLS equation and its higher-order extension derived by Trulsen et al. [K. Trulsen, I. Kliakhandler, K.B. Dysthe, M.G. Velarde, On weakly nonlinear modulation of waves on deep water, Phys. Fluids 12 (10) (2000) 2432–2437]. They are also compared with the results obtained with a high-order spectral method (HOSM) based on the formulation of West et al. [B.J. West, K.A. Brueckner, R.S. Janda, A method of studying nonlinear random field of surface gravity waves by direct numerical simulation, J. Geophys. Res. 92 (C11) (1987) 11 803–11 824]. An important issue concerning the representation and the treatment of the vertical velocity in the HOSM formulation is highlighted here for the study of long-time evolutions.  相似文献   

5.
We are concerned by a special mechanism that can explain the formation of freak waves. We study numerically the long time evolution of a surface gravity wave packet, comparing a fully nonlinear model with Schrödinger-like simplified equations. We observe that the interaction between envelope solitons generates large waves. This is predicted by both models. The fully nonlinear simulations show a qualitative behaviour that differs significantly from the ones preticted by Schrödinger models, however. Indeed, the occurence of freak waves is much more frequent with the fully nonlinear model. This is a consequence of the long-time interaction between envelope solitons, which, in the fully nonlinear model, is totally different from the Schrödinger scenario. The fundamental differences appear for times when the simplified equations cease to be valid. Possible statistical models, based on the latter, should hence under-estimate the probability of freak wave formation. To cite this article: D. Clamond, J. Grue, C. R. Mecanique 330 (2002) 575–580.  相似文献   

6.
Wang  Binji  Ma  Zhimin  Xiong  Sihan 《Nonlinear dynamics》2023,111(10):9477-9494

In this research article, we study a new (3+1)-dimensional Hirota bilinear equation which can describe the dynamics of ion-acoustic wave and Alvin wave of small but finite amplitude in plasma physics and describe the propagation process of nonlinear waves in shallow water. First, we apply two methods to study the equation, namely the Hirota bilinear method and long-wave limit method M-lump solution, and line rogue waves are reported. Furthermore, we investigate the velocity, propagation trajectory, and interaction phenomenon of M-lump solution(M=2,3). Then, based on the multi-solitons, two cases of high-order breather solution are constructed by selecting some special parameters. Finally, four types interaction solutions are successfully obtained by employing long-wave limit method and selecting some special parameters. More importantly, we explore physical collision phenomenon of the interaction between nonlinear waves. In order to better illustrate the characteristics of the interaction solutions, the results are shown in three-dimensional plots and numerical simulation. To our knowledge, all of the obtained solutions in this article are novel. The results of this article may be provide an important theoretical basis for explaining some nonlinear phenomena in the field of fluid mechanics and shallow water.

  相似文献   

7.
The wave processes in a system described by a fourth-order partial differential equation with Burgers-Korteweg-de Vries nonlinearity are considered. The initial equation is reduced to a dynamical system of three equations, which is analyzed by means of a numerical method. It is shown that the equation for the waves in dissipative-dispersive systems with instability has solutions in the form of solitary waves and wave fronts.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 99–104, March–April, 1989.  相似文献   

8.
9.
Zhao  Xin  Tian  Bo  Tian  He-Yuan  Yang  Dan-Yu 《Nonlinear dynamics》2021,103(2):1785-1794

In this paper, outcomes of the study on the Bäcklund transformation, Lax pair, and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics, fluid mechanics, and plasma physics are presented. Via the Hirota bilinear method, a bilinear Bäcklund transformation is obtained, based on which a Lax pair is constructed. Via the symbolic computation, mixed rogue–solitary and rogue–periodic wave solutions are derived. Interactions between the rogue waves and solitary waves, and interactions between the rogue waves and periodic waves, are studied. It is found that (1) the one rogue wave appears between the two solitary waves and then merges with the two solitary waves; (2) the interaction between the one rogue wave and one periodic wave is periodic; and (3) the periodic lump waves with the amplitudes invariant are depicted. Furthermore, effects of the noise perturbations on the obtained solutions will be investigated.

  相似文献   

10.
We consider the rogue dn-periodic waves (the rogue wave solutions on the dn-periodic waves background) for the Hirota equation by using Darboux transformation. We take Jacobian elliptic function dn as a seed solution, which is modulationally unstable as regards long wave perturbations. Through nonlinearization of the Lax pair for Hirota equation, the corresponding periodic eigenfunctions are successfully obtained. Based on these periodic eigenfunctions, we further construct the solutions of the Lax pair equations with dn-periodic wave seed solutions. In addition, numerical simulations are presented to reveal the phenomena of these solutions under different parameters choices.  相似文献   

11.
The propagation of long weakly nonlinear waves in an atmospheric waveguide is considered. A model system of Kadomtsev-Petviashvili equations [1], which describes the propagation of such waves, is derived. In the case of one excited wave mode the system of model equations goes over into the Kadomtsev-Petviashvili equation, in which, however, the variables x and t are interchanged. The reasons for this are clarified. In the two-dimensional case an approximate solution of the model equations is constructed, and steady nonlinear waves and their interaction in a collision are considered. The results of a numerical verification of the stability of the approximate steady solutions and of the solution to the problem of decay of the wave into quasisolitons are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 151–157, May–June, 1988.  相似文献   

12.
Self–induced excitation of periodic nonlinear waves on a viscoelastic coating interacting with a turbulent boundary layer of an incompressible flow is studied. The response of the flow to multiwave excitation of the coating surface is determined in the approximation of small slopes. A system of equations is obtained for complex amplitudes of multiple harmonics of a slow (divergent) wave resulting from the development of hydroelastic instability on a coating with large losses. It is shown that three–wave resonant relations between the harmonics lead to the development of explosive instability, which is stabilized due to the deformation of the mean (Sover the wave period) shear flow in the boundary layer. Conditions of soft and hard excitation of divergent waves are determined. Based on the calculations performed, qualitative features of excitation of divergent waves in known experiments are explained.  相似文献   

13.
Three reasons for freak wave generation due to interaction of wave with spatially non-uniform current are considered in the paper. They are as follows: wave energy amplification due to wave-current interaction; wave height amplification around caustic due to refraction wave in non-uniform current; non-linear wave interaction in shallow water due to their intersection described by the Kadomtsev–Petviashvili equation. These mechanisms can generate a large wave amplification producing a dangerous natural phenomenon.  相似文献   

14.
In the weakly nonlinear approximation wave processes in flowing films, the propagation of concentration waves in chemical reactions, the hydrodynamic instability of a laminar flame, and thermocapillary convection in a thin layer are described by equations of the type ht + 4hhx + hxx + hxxxx=0. A special role in wave processes is played by nonlinear localized signals-solitary waves or solitons. In this paper the methods of the theory of dynamical systems are used to carry out a full investigation of solutions of the stationary soliton type for the above-mentioned equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 91–97, May–June, 1986.  相似文献   

15.
With the help of the similarity transformation connected the variable-coefficient nonlinear Schrödinger equation with the standard nonlinear Schrödinger equation, we firstly obtain first-order and second-order rogue wave solutions in two dimensional graded-index waveguides. Then, we investigate the nonlinear tunneling of controllable rogue waves when they pass through nonlinear barrier and nonlinear well. Our results indicate that the propagation behaviors of rogue waves, such as postpone, sustainment and restraint, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the effective propagation distance corresponding to maximum amplitude of rogue waves Z 0. Postponed, sustained and restrained rogue waves can tunnel through the nonlinear barrier or well with increasing, unchanged and decreasing amplitudes by modulating the ratio of the amplitudes of rogue waves to barrier or well height.  相似文献   

16.
非线性的存在会产生高次谐波,这些谐波又反作用于原来的低次谐波,使波幅发生缓慢变化,从而产生缓慢调制现象.这里从考虑均匀流作用下的毛细重力水波基本方程出发,在不可压缩、无旋、无黏条件假设下,使用多重尺度分析方法推导出了在均匀流影响下有限深水毛细重力波振幅所满足的非线性Schr?dinger方程(NLSE).分析了NLSE解的调制不稳定性.给出了毛细重力波调制不稳定的条件和钟型孤立波产生的条件.分析了无量纲最大不稳定增长率随无量纲水深和表面张力的变化趋势.同时给出了无量纲不稳定增长率随无量纲微扰动波数变化的曲线,呈现出了先增大后减小的趋势.最后指出均匀顺流减小了无量纲不稳定增长率及最大增长率,逆流增大了它们.由表面张力作用产生的毛细波及重力与表面张力共同作用产生的毛细重力波,与流的相互作用可以改变海表粗糙度和海洋上层流场结构,进而影响海气界面动量、热量及水汽的交换.了解海表这些短波动力机制,对卫星遥感的精确测量、海气相互作用的研究及海气耦合模式的改进等有重要意义.   相似文献   

17.
In this article we study the time evolution of broad banded, random inhomogeneous fields of deep water waves. Our study is based on solutions of the equation derived by Crawford, Saffman and Yuen in 1980, (Crawford et al., 1980). Our main result is that there is a significant increase in the probability of freak wave occurrence than that predicted from the Rayleigh distribution. This result follows from the investigation of three related aspects. First, we study the instability of JONSWAP spectra to inhomogeneous disturbances whereby establishing a wider instability region than that predicted by Alber’s equation. Second, we study the long time evolution of such instabilities. We observe that, during the evolution, the variance of the free surface elevation and thus, the energy in the wave field, localizes in regions of space and time. Last, we compute the probabilities of encountering freak waves and compare it with predictions obtained from Alber’s equation and the Rayleigh distribution.  相似文献   

18.
This paper presents a newly developed approach for the numerical modelling of wind effects on the generation and dynamics of freak waves. In this approach, the quasi arbitrary Lagrangian–Eulerian finite element method (QALE-FEM) developed by the authors of this paper is combined with a commercial software (StarCD). The former is based on the fully nonlinear potential model, in which the wind-excited pressure is modelled using a modified Jeffreys' model [9]. The latter has a volume of fluid (VOF) solver which can handle violent air–wave interaction problems. The combination can simulate the interaction between freak waves and winds with an improved computational efficiency. The numerical approach is validated by comparing its predictions with experimental data. Satisfactory agreements are achieved. Detailed numerical investigations of the interaction between winds and 2D freak waves are carried out, which not only explore different air flow states but also reveal the wind effects on the change of freak wave profiles. Both breaking and non-breaking freak waves are considered.  相似文献   

19.
We construct Darboux transformation of a coupled generalized nonlinear Schrödinger (CGNLS) equations and obtain exact analytic expressions of breather and rogue wave solutions. We also formulate the conditions for isolating these solutions. We show that the rogue wave solution can be found only when the four wave mixing parameter becomes real. We also investigate the modulation instability of the steady state solution of CGNLS system and demonstrate that it can occur only when the four wave mixing parameter becomes real. Our results give an evidence for the connection between the occurrence of rogue wave solution and the modulation instability.  相似文献   

20.
Numerical simulation of evolution of nonlinear gravity waves is presented. Simulation is done using two-dimensional code, based on conformal mapping of the fluid to the lower half-plane. We have considered two problems: (i) modulation instability of wave train and (ii) evolution of NLSE solitons with different steepness of carrier wave. In both cases we have observed formation of freak waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号