首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and inexpensive method for sorptive extraction of phenols from water samples is presented. A polydimethyl siloxane (PDMS) stir bar (Twister) is used as an extraction medium for derivatized phenols, which is thermally desorbed and analyzed by gas chromatography-mass spectrometry (GC-MS). Its performance was illustrated and evaluated for the enrichment of microg l(-1) to ng l(-1) of phenol and selected chlorophenols in water samples. The method showed good linearity, recoveries and blank levels, as well as advantages such as sensitivity, simplicity, low cost and high feasibility, being successfully applied for the analysis of phenolic compounds in natural water samples.  相似文献   

2.
The performance of stir bar sorptive extraction (SBSE) for the enrichment of pesticides from vegetables, fruits and baby food samples is discussed. After extraction with methanol, an aliquot is diluted with water and SBSE is performed for 60 min. By applying a new thermal desorption unit (TDU), fully automated and unattended desorption of 98 stir bars is feasible, making SBSE very cost-effective. The presence of pesticide residues is elucidated with the retention time locked gas chromatography–mass spectroscopy method (RTL-capillary GC–MS). With SBSE–RTL-capillary GC–MS operated in the scan mode, more than 300 pesticides can be monitored in vegetables, fruits and baby food. The multi-residue method (MRM) described provides detectabilities from the mg/kg (ppm) to the sub-μg/kg (ppb) level, thereby complying with the maximum residue levels (MRLs) set by regulatory organizations for pesticides in different matrices. Several examples, i.e. pesticide residues in lettuce, pears, grapes and baby food, illustrate the potential of SBSE–RTL-capillary GC–MS.  相似文献   

3.
A fast method for detection of tuberculostearic acid (TBSA) in sputum samples is described. The samples, obtained from patients with known or suspected pulmonary tuberculosis, were decontaminated and concentrated before being analyzed by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry (SBSE-TD-GC-MS). Prior to extraction, the mycobacterial lipids were hydrolyzed and then derivatized with ethyl chloroformate to increase the sorption of the compounds by the polydimethylsiloxane (PDMS) stir bar coating. The limit of detection (LOD) is 0.2 ng ml(-1). Four sputum samples that were classified by direct microscopy as smear-positive or negative were analyzed by GC-MS. TBSA was detected at concentrations ranging from 0.47 to 2.3 ng ml(-1). The method is sufficiently sensitive to detect TBSA directly in clinical samples without the need to culture the organisms.  相似文献   

4.
This article presents a method employing stir bar sorptive extraction (SBSE) with in situ derivatization, in combination with either thermal or liquid desorption on-line coupled to gas chromatography-mass spectrometry for the analysis of fluoxetine in plasma samples. Ethyl chloroformate was employed as derivatizing agent producing symmetrical peaks. Parameters such as solvent polarity, time for analyte desorption, and extraction time, were evaluated. During the validation process, the developed method presented specificity, linearity (R2 > 0.99), precision (R.S.D. < 15%), and limits of quantification (LOQ) of 30 and 1.37 pg mL−1, when liquid and thermal desorption were employed, respectively. This simple and highly sensitive method showed to be adequate for the measurement of fluoxetine in typical and trace concentration levels.  相似文献   

5.
6.
In this work, making use of experimental designs, headspace-stir bar sorptive extraction (HS-SBSE) followed by thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of mercury and tin organometallic compounds present in surface water, sediment and biological tissue was optimized. All solid samples require a previous extraction typically done with diluted HCl or KOH/methanol solutions, and the derivatization, in all the cases, of the organometallic compounds with NaBEt(4). As a consequence, the preconcentration step was carried out in a 0.1 mol L(-1) HOAc/NaOAc buffer solution, with 0.1% (m/v) of NaBEt(4), without the addition of NaCl as a salting out reagent, and with the stir bar (20 mm x 1 mm) located in the headspace (HS). In addition, the desorption step required the following conditions: 250 degrees C (desorption temperature), 15 min (desorption time), 14.1 psi (approximately 97.2 kPa) (vent pressure) and 75 mL min(-1) (vent flow). Finally, to assure the extraction of all the analytes under equilibrium, 5h are required. Inorganic mercury (Hg(2+)) and tripropyltin (TPrT) were used as internal standards to correct for variations in the extraction, derivatization and detection steps. The resulting method provides precise (4-17%) and accurate (against four certified reference materials) results in the ng L(-1) and pg g(-1) range concentrations with recoveries within 80-120% for water samples. The proposed methodology is currently applied in the speciation analysis of specimens obtained in different estuarine sites of the Basque Coast.  相似文献   

7.
A multiresidue method for the determination of 35 organic micropollutants (pesticides and polycyclic aromatic hydrocarbons) in water has been optimised using stir bar sorptive extraction (SBSE) and thermal desorption coupled to capillary gas chromatography-mass spectrometry (GC-MS). In the present work, the different parameters affecting the extraction of the analytes from the water samples to the PDMS-coated stir bars and optimisation of conditions affecting thermal desorption are investigated. The optimised conditions consist of a 100-ml water sample with 20% NaCl addition extracted with 20 mm length x 0.5 mm film thickness stir bars at 900 rpm during 14 h at ambient temperature. Desorption is carried out at 280 degrees C during 6 min under a helium flow of 75 ml/min in the splitless mode while maintaining a cryofocusing temperature of 20 degrees C in the programmed-temperature vaporisation (PTV) injector of the GC-MS system. Finally, the PTV injector is ramped to a temperature of 280 degrees C and the analytes are separated in the GC and detected by MS using full scan mode (m/z 60-400). Under the described conditions, the good repeatability, high analyte recoveries and robustness, make SBSE a powerful tool for routine quality control analysis of the selected semivolatile compounds in water samples.  相似文献   

8.
Lavagnini I  Urbani A  Magno F 《Talanta》2011,83(5):2092-1762
Stir bar sorptive extraction (SBSE)-thermal desorption (TD) procedure combined with gas chromatography mass spectrometry (GC-MS) and the statistical variance component model (VCM) is applied to the determination of semi-volatile compounds including organochlorine and organophosphorus pesticides in various synthetic and real fruit-based soft drink matrices. When the matrix effects are corrected using isotopically labelled or non labelled internal standard, but matrix/calibration run-induced deviations are still present in the measurements, the adoption of a variance component model (VCM) in the quantitative analysis of various matrices via an overall calibration curve is successful. The method produces an overall calibration straight line for any analyte accounting for the uncertainty due to all the sources of uncertainty, namely matrix-induced deviations, calibration runs performed at different times, measurement errors. Small increases in the detection limits and in uncertainty in the concentration values obtained in the inverse regression face favourably the decrease in times and costs for routine analyses.  相似文献   

9.
This study presents the development of an analytical method for determining 9 synthetic musks in water matrices. The developed method is based on stir bar sorptive extraction (SBSE), coated with polydimethylsiloxane, and coupled with a thermal desorption–gas chromatography–mass spectrometry system (TD–GC–MS). SBSE can efficiently trap and desorb the analytes providing low limits of detection (between 0.02 ng L−1 and 0.3 ng L−1). Method validation showed good linearity, repeatability and reproducibility for all compounds. Furthermore, the limited manipulation of the sample required in this method implies a significant decrease of the risk of external contamination of the samples. The performance of the method in real samples was evaluated by analysing biological wastewater treatment plant (WWTP) influent and effluent samples, reverse osmosis treatment plant effluents and river waters. The most abundant musk was galaxolide with values up to 2069 ng L−1 and 1432 ng L−1 in the influent and effluent of urban WWTP samples, respectively. Cashmeran, Pantolide and Tonalide were also detected in all the matrices with values up to 94 ng L−1, 26 ng L−1 and 88 ng L−1, respectively. Although in Europe the use of nitromusks in cosmetics is prohibited, musk xylene and musk ketone were detected both in the WWTP and in the river samples. As far as we know, this is the first time than a SBSE method coupled with TD is applied for the determination of synthetic musks in water samples.  相似文献   

10.
A method for determining 68 pesticides in river water using stir bar sorptive extraction (SBSE)-thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS) is described. SBSE sampling was optimized for sample solution pH, salting-out and methanol addition. Although salting-out enhanced the ability of the method to extract most of the pesticides with low absolute recoveries, the absolute recoveries of four pesticides were not improved by salting-out. The detection limits of the method for the pesticides ranged from 0.2 to 20 ng/l. Analyte recoveries from a river water sample spiked with standards at 10 and 100 ng/l were 58.5–132.0% (RSD: 1.8–15.8%) and 61.0–121.3% (RSD: 1.4–20.2%), respectively.  相似文献   

11.
Stir bar sorptive extraction (SBSE) was applied to extract benzothiazole (BT) from untreated wastewater using a novel polyacrylate (PA)-coated stir bar (PA Twister®). After extraction, BT was desorbed in a thermal desorption system (TDS) and analysed by GC–MS (gas chromatography–mass spectrometry). The sample contained 30% (w/w) NaCl, the sample temperature was 30 °C and the extraction time was 240 min. Since no filtering or clean-up steps or solvents were necessary SBSE clearly performs better than all previously used extractions techniques for analysing BT in untreated wastewater in terms of easy use, sample throughput and analytical costs. In addition, matrix effects were small. The calibration curve resulting from the standard addition method was linear with a value of the stability index (R2) of 0.999 (n = 3). A good inter-day repeatability of the method was observed with a relative standard deviation (RSD) of 9.8% (n = 6). A low limit of detection (LOD) of 0.256 μg L−1 was achieved using only a small sample volume of 18 mL. Small sample volumes significantly reduce sample transport costs. The concentration of BT in untreated wastewater was determined to be 1.04 μg L−1.  相似文献   

12.
A direct, simple and solvent‐free method based on headspace stir bar sorptive extraction and thermal desorption gas chromatography with mass spectroscopy was developed to determine 13 musk fragrances (six polycyclic musks, three nitro musks and four macrocyclic musks) in sludge without sample treatment. The optimal headspace stir bar sorptive extraction conditions were achieved when a polydimethylsiloxane stir bar was exposed for 45 min in the headspace of a 10 mL vial filled with 100 mg of sludge mixed with 0.2 mL of water stirred at 750 rpm at 80°C. The stir bar was then desorbed in the thermal desorption gas chromatography and mass spectrometry system, obtaining limits of detection between 5 and 30 ng/g. The method applicability was tested with sewage sludge from two urban wastewater treatment plants and from a potable water treatment plant. Results showed galaxolide and tonalide to be the most abundant musk fragrances found in wastewater treatment plants with maximal concentrations of 9240 and 7500 ng/g, respectively. Maximum concentration levels between 35 and 635 ng/g were found for musk ketone, musk moskene, traseolide, phantolide and celestolide in this kind of samples. Concentrations below the limits of quantitation of phantolide, galaxolide, tonalide and musk ketone were found in sludge from a potable water treatment plant.  相似文献   

13.
A simple and highly sensitive method called thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of 4-nonylphenol (NP) and 4-tert.-octylphenol (OP) in water samples, is described. NP and OP in samples are extracted from water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. A stir bar coated with polydimethylsiloxane (PDMS) is added to a 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 °C) in a headspace vial. Then the extract is high sensitively analyzed by TD-GC-MS without any derivatization step. The optimum SBSE conditions are realized at an extraction time of 60 min. The detection limits are 0.02 ng ml−1 for NP and 0.002 ng ml−1 for OP. The method shows good linearity over the concentration range of 0.1-10 ng ml−1 for NP and 0.01-10 ng ml−1 for OP, and the correlation coefficients are higher than 0.999. The average recoveries of NP and OP are higher than 97% (R.S.D.: 3.6-6.2%) with correction using the added surrogate standards, 4-(1-methyl) octylphenol-d5 and deuterium 4-tert.-octylphenol. This simple, accurate, sensitive and selective analytical method may be used in the determination of trace amounts of NP and OP in tap and river water samples.  相似文献   

14.
A method for the determination of stale-flavor carbonyl compounds including E-2-octenal, E-2-nonenal, E,Z-2,6-nonadienal and E,E-2,4-decadienal in beer was developed using stir bar sorptive extraction (SBSE) with in-situ derivatization followed by thermal desorption-GC-MS analysis. The derivatization conditions with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and the SBSE conditions--sampling mode, salt addition, sample volume, polydimethylsiloxane volume (sample/polydimethylsiloxane phase ratio) and extraction time--were examined. The method showed good linearity over the concentration range from 0.1 to 10 ng ml(-1) for all analytes and the correlation coefficients were higher than 0.9993. The limits of detection ranged from 0.021 to 0.032 ng ml(-1) for all analytes. The recoveries (98-101%) and precision (RSD 2.4-7.3%) of the method were examined by analyzing beer samples fortified at the 0.5-ng ml(-1) level. The method was successfully applied to low-level concentration samples.  相似文献   

15.
Stir bar sorptive extraction (SBSE) in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was applied for the determination of 9 UV filters in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 20 mL of water sample at pH 2 (10% MeOH) and stirred at 1000 rpm for 180 min. Then, the stir bar was subjected to TD-GC-MS. The desorption conditions (desorption temperature and desorption time) and SBSE parameters (ionic strength, pH, presence of organic solvent and time) were optimised using a full factorial design and a Box-Behnken design, respectively. The method shows good linearity (correlation coefficients >0.994) and reproducibility (RSD<16%). The extraction efficiencies were above 63% for all the compounds. Detection limits were between 0.2 and 63 ng/L. The developed method offers the ability to detect several UV filters at ultra-low concentration levels with only 20 mL of sample volume. The effectiveness of the method was tested by analysing real samples such as lake water, river water and treated wastewater. The application of the method allowed reporting the levels of UV filters in environmental water samples.  相似文献   

16.
A novel method called thermal desorption (TD) with in tube silylation followed by gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of alkylphenols (APs) in river water samples, is described. APs are extracted from river water samples and concentrated by the stir bar sorptive extraction (SBSE) technique. The stir bar coated with polydimethylsiloxane (PDMS) is added to 2.0 ml water sample and stirring is carried out for 60 min at room temperature (25 degrees C) in the vial. Then, the PDMS stir bar is subjected to TD with in tube silylation followed by GC-MS. The detection limit is of the sub pg ml(-1) (ppt) level. The method shows good linearity and the correlation coefficients are higher than 0.99 for all analytes. The average recoveries of APs are higher than 90% (R.S.D.: 3.6-14.8%, n=6). This simple and sensitive analytical method may be used in the determination of trace amounts of APs in river water samples.  相似文献   

17.
This study describes the development of a new method for determining p-hydroxybenzoic esters (parabens) in house dust. This optimised method was based on the pressurised hot water extraction (PHWE) of house dust, followed by the acetylation of the extracted parabens, stir bar sorptive extraction (SBSE) with a polydimethylsiloxane stir bar, and finally analysis using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The combination of SBSE and PHWE allows the analytes to be preconcentrated and extracted from the aqueous extract in a single step with minimal manipulation of the sample. Furthermore the in situ acetylation of parabens prior to SBSE improved their extraction efficiency and their GC-MS signal. The method showed recoveries of between 40 and 80%, good linearity, repeatability and reproducibility (<10% RSD, at 100 ng g(-1), n=5), low limits of detection (from 1.0 ng g(-1) for propyl paraben to 2.1 ng g(-1) for methyl paraben) and quantification (from 3.3 ng g(-1) for propyl paraben to 8.5 ng g(-1) for methyl paraben). The proposed method was applied to the analysis of house dust samples. All the target parabens were found in the samples. Methyl and propyl parabens were the most abundant, with concentrations up to 2440 ng g(-1) and 910 ng g(-1), respectively. The high levels of parabens found in the samples confirm the importance of determining organic contaminants in indoor environments.  相似文献   

18.
崔丽丽  闫梅霞  朴向民  逄世峰  王英平 《色谱》2018,36(11):1173-1180
建立了QuEChERS-气相色谱-质谱联用(GC-MS)法同时测定人参中20种农药残留量的检测技术。样品前处理采用改进的QuEChERS方法,人参粉加水浸润后,用乙腈均质提取,用N-丙基乙二胺(PSA)和MgSO4净化,结合GC-MS检测系统,在电子轰击源(EI)选择离子监测(SIM)模式下进行检测,使用HP-5毛细管柱进行分离。在优化条件下,20种农药在一定范围内线性关系良好,相关系数大于0.990,方法检出限(信噪比S/N=3)为0.001~0.007 mg/kg,定量限(S/N=10)为0.002~0.024 mg/kg,平均回收率为70.41%~114.06%,相对标准偏差(RSD)为0.76%~15.47%。该方法操作简单快捷、灵敏度高。  相似文献   

19.
R.M. Callejon  A.M. Troncoso  M.L. Morales   《Talanta》2007,71(5):1610-2097
A complete methodology for the determination of chloroanisoles and chlorophenols in cork material is proposed. The determination is accomplished by means of a previous liquid–solid extraction followed by stir bar sorptive extraction (SBSE) coupled to gas chromatography–mass spectrometry (GC–MS). Two different liquid–solid extraction experiments were conducted and eight compounds considered (2,6-dichloroanisole, 2,4-dichloroanisole, 2,4,6-trichloroanisole, 2,4,6-trichlorophenol, 2,3,4,6-tetrachloroanisole, 2,3,4,6-tetrachlorophenol, pentachloroanisole and pentachlorophenol). From the results obtained we can conclude that high volume extraction extending extraction time up to 24 h is the best choice if we have to release compounds from the inner surfaces of cork stoppers. Recovery percentages ranged from 51% for pentachloroanisole to 81% for 2,4-dichloroanisole. This method allows the determination of an array of compounds involved in cork taint at very low levels from 1.2 ng g−1 for 2,4,6-tricholoroanisole to 23.03 ng g−1 for 2,3,4,6-tetrachlorophenol.  相似文献   

20.
A method for mercury analysis and speciation in drinking water was developed, which involved stir bar sorptive extraction (SBSE) with in situ propyl derivatization and thermal desorption (TD)-GC-MS. Ten millilitre of tap water or bottled water was used. After a stir bar, pH adjustment agent and derivatization reagent were added, SBSE was performed. Then, the stir bar was subjected to TD-GC-MS. The detection limits were 0.01 ng mL(-1) (ethylmercury; EtHg), 0.02 ng mL(-1) (methylmercury; MeHg), and 0.2 ng mL(-1) (Hg(II) and diethylmercury (DiEtHg)). The method showed good linearity and correlation coefficients. The average recoveries of mercury species (n=5) in water samples spiked with 0.5, 2.0, and 6.0 ng mL(-1) mercury species were 93.1-131.1% (RSD<11.5%), 90.1-106.4% (RSD<7.8%), and 94.2-109.6% (RSD<8.8%), respectively. The method enables the precise determination of standards and can be applied to the determination of mercury species in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号