首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of bishydroxylamines of the type HON(R)CH2CH2N(R)OH (R=Me, tBu) with trimethyl- and triisopropylgallium gave bicyclic metalla cages of the formula R'2GaO(R)NCH2CH2N(R)OGaR'2 [R'=Me, R=Me (), tBu (); R'=iPr, R=Me (), tBu ()] with six-membered Ga2O2N2-rings. While the complexes show the same core constitution in the solid state, NMR spectra reveal the steric influence of the isopropyl substituent of the compounds / on its behaviour in solution. The reaction of the sterically more demanding substituted tri-tert-butylgallium with HON(Me)CH2CH2N(Me)OH yielded a heterodimeric complex O'-[HON(Me)CH2CH2NH(Me)O(tBu2Ga)]-cyclo-(tBu2Ga)-O,N'-[ON(Me)CH2CH2N(Me)O] () with two gallium atoms of different surrounding and two different bishydroxylamine ligands, one doubly deprotonated and one protonated, but at one end in its tautomeric aminoxide form. Further condensation of was observed to give a tricyclic compound cyclo-[(tBuGa)ON(Me)CH2CH2N(Me)O]2 () with a central Ga2O2N2 ring resulting from two Ga-N donor-acceptor bonds.  相似文献   

2.
At atmospheric pressure and at 130-160 degrees C, primary aromatic amines (p-XC6H4NH2, X = H, Cl, NO2) are mono-N-alkylated in a single step, with symmetrical and asymmetrical dialkyl carbonates [ROCOOR', R = Me, R' = MeO(CH2)2O(CH2)2; R = R' = Et; R = R' = benzyl; R = R' = allyl; R = Et, R' = MeO(CH2)2O(CH2)2], in the presence of a commercially available NaY faujasite. No solvents are required. Mono-N-alkyl anilines are obtained with a very high selectivity (90-97%), in good to excellent yields (68-94%), on a preparative scale. In the presence of triglyme as a solvent, the mono-N-alkyl selectivity is independent of concentration and polarity factors. The reaction probably takes place within the polar zeolite cavities, and through the combined effect of the dual acid-base properties of the catalyst.  相似文献   

3.
Bok T  Yun H  Lee BY 《Inorganic chemistry》2006,45(10):4228-4237
Regioselective nucleophilic aromatic substitution of an o-fluorine occurs to afford fluorine-substituted o-phenylene-bridged bis(anilido-aldimine) compounds o-C6H4[(C6H2R2)N=CH-C6F4-(H)N(C6H3R'2)]2 when Li(H)N-C6H3R'2 (R' = iPr, Et, Me) is reacted with o-C6H4[(C6H2R2)N=CH-C6F5]2 (R = iPr, Et, Me) in a nonpolar solvent such as diethyl ether or toluene. Successive additions of Me2Zn and SO2 gas to the bis(anilido-aldimine) compounds afford quantitatively dinuclear mu-methylsulfinato zinc complexes o-C6H4[[(C6H2R2)N=CH-C6F4-N(C6H3R'2)-kappa2N,N]Zn(mu-OS(O)Me)]2 (R = iPr, R' = iPr, 3a; R = iPr, R' = Me, 3c; R = Et, R' = (i)Pr, 3d; R = Et, R' = Et, 3e; R = Et, R' = Me, 3f; R = Me, R' = iPr, 3g; R = Me, R' = Et, 3h; R = Me, R' = Me, 3i). The molecular structure of 3c was confirmed by X-ray crystallography. Fluorine-substituted complexes 3a-i show significantly higher TOF (turnover frequencies) than the unfluorinated analogues for CO2/(cyclohexene oxide) copolymerization. The TOF is highly sensitive to the substituents R and R', and the highest TOF (2480 h(-1)) is obtained with 3g (R = Me, R' = iPr). Complex 3g is less sensitive to the residual protic impurities present in the monomers and shows activity at such a low catalyst concentration as [Zn]:[cyclohexene oxide] = 1:50,000, at which the unfluorinated analogue is completely inactive. By realizing the activity at such an extremely low [Zn]:[cyclohexene oxide] ratio, we achieve a high TON (turnover number) up to 10,100. High-molecular-weight polymers (M(n), 100,000-200,000) are obtained with a rather broad molecular-weight distribution (M(w)/M(n), 1.3-2.5). The obtained polymers are not perfectly alternating, and variable carbonate linkages (65-85%) are observed depending on the N-aryl ortho substituents R and R' and the polymerization conditions.  相似文献   

4.
Acyclic o-phenylene-bridged bis(anilido-aldimine) compounds, o-C(6)H(4){C(6)H(2)R(2)N=CH-C(6)H(4)-(H)N(C(6)H(3)R'(2))}(2) and related 30-membered macrocyclic compounds, o-C(6)H(4){C(6)H(2)R'(2)N=CH-C(6)H(4)-(H)N-C(6)H(2)R(2)}(2) (o-C(6)H(4)) are prepared. Successive additions of Me(2)Zn and SO(2) gas to the bis(anilido-aldimine) compounds afford quantitatively dinuclear mu-methylsulfinato zinc complexes, o-C(6)H(4){(C(6)H(2)R(2)N=CH-C(6)H(4)-N(C(6)H(3)R'(2))-kappa(2)-N,N)Zn(mu-OS(O)Me)}(2) (R = iPr and R' = iPr, 29; R = Et and R' = Et, 30; R = Me and R'= Me, 31; R = Me and R' = iPr, 32; R = Et and R' = Me, 33; R = Et and R' = iPr, 34; R = iPr and R' = Et, 35) and o-C(6)H(4){C(6)H(2)R'(2)N=CH-C(6)H(4)-N-C(6)H(2)R(2)-kappa(2)-N,N)Zn(mu-OS(O)Me)}(2) (o-C(6)H(4)) (R = Et and R'= Et, 36; R = Me and R' = Me, 37; R = iPr and R' = Me, 38; R = Et and R' = Me, 39; R = Me and R'= iPr, 40). Molecular structures of 34 and 40 are confirmed by X-ray crystallography. Complexes 30-35 show high activity for cyclohexene oxide/CO(2) copolymerization at low [Zn]/[monomer] ratio (1:5600), whereas the complex of mononucleating beta-diketiminate {[(C(6)H(3)Et(2))N=C(Me)CH=C(Me)N(C(6)H(3)Et(2))]Zn(mu-OS(O)Et)}(2) shows negligible activity in the same condition. Activity is sensitive to the N-aryl ortho substituents and the highest activity is observed with 32. Turnover number up to 2980 and molecular weight (M(n)) up to 284 000 are attained with 32 at such a highly diluted condition as [Zn]/[monomer] = 1:17 400. Macrocyclic complexes 36-40 show negligible activity for copolymerization.  相似文献   

5.
The platinum(II) compounds trans-[PtX(2)(RR'C=NOH)(2)] [X = Cl, R = R' = Me, RR' = (CH(2))(4), (CH(2))(5); X = Br, R = R' = Me] react with m-chloroperoxybenzoic acid (MCPBA) in dimethylformamide to give the platinum(II) complexes [PtX(2){N(=O)CRR'ONCRR'}] containing coordinated nitrosoalkane ligands. The complexes [PtX(2){N(=O)CRR'ONCRR'}] were characterized by elemental analysis, EI-MS, IR, electronic absorption, and (1)H NMR spectroscopy; X-ray structure analysis was performed for [PtCl(2){N(=O)CC(5)H(10)ONCC(5)H(10)}]. The latter compound crystallizes in the triclinic P&onemacr; space group with a = 9.214(2) ?, b = 9.577(2) ?, c = 10.367(2) ?, alpha = 109.14(2) degrees, beta = 91.87(2) degrees, gamma = 115.62(2) degrees, V = 762.8(3) ?(3), Z = 2, and rho(calcd) = 2.135 g cm(-)(3). The reaction between trans-[PtX(2)(RR'C=NOH)(2)] and MCPBA displays a solvent dependence: interaction of these reagents in ketones, R(1)R(2)C=O, yields the platinum(IV) chelates [PtX(2)(OCR(1)R(2)ON=CRR')(2)], while the oxidation state of the oxime N atom remains unchanged. Heating [PtCl(2)(OCR(1)R(2)ON=CRR')(2)] in DMF or in DMF-d(7) at 100 degrees C leads to the extrusion of R(1)R(2)C=O and the formation of [PtCl(2){N(=O)CRR'ONCRR'}].  相似文献   

6.
Synthesis of the title compounds, viz. [RN(CH2CHR'O)2]2Ge (1, R = Me, R' = H; 2, R = Me, R' = Ph; 3, R = Ph, R' = H), by the reaction of 2 equiv of corresponding dialkanolamines RN(CH2CHR'OH)2 (4, R = Me, R' = H; 5, R = Me, R' = Ph; 6, R = Ph, R' = H) with (AlkO)4Ge is reported. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry as well as elemental analysis data. The single-crystal X-ray diffraction of 2 has clearly indicated the presence of two transannular interactions Ge<--N in the compound. N atoms are cis-orientated. The compound 3 possesses long Ge...N distances. The structural data obtained from geometry optimizations by DFT calculations on 1-3 reproduces experimental results. Both cis- and trans-isomers were studied, and cis-configuration was found to be more thermodynamically stable for all three compounds. The transition states for possible cis <--> trans rearrangement processes in 1-3 were calculated. The properties of the Ge-O and Ge<--N bonds in 1-3 were analyzed by the AIM approach. The interactions between the Ge atom and N atoms as well as O atoms possess predominantly ionic character.  相似文献   

7.
Sulfur ylides R(2)S(+)-C(-)HR' react with aldehydes R' '-CHO to form epoxides, predominantly as the trans isomers, in a synthetically useful reaction which is increasingly used in its asymmetric variant with chiral sulfides. The mechanisms of the "model" reaction (R = Me, R' = R' ' = H) and the reaction forming stilbene oxide (R = Me, R' = R' ' = Ph) have been studied in detail using density functional theory, the B3LYP density functional, and flexible basis sets. It has been shown that for this reaction involving highly polar intermediates, continuum solvation models need to be used throughout to obtain reasonable results. For the reaction of benzaldehyde with dimethylsulfonium benzylide, the key steps are shown to be quasi [2 + 2] addition of the ylide to the aldehyde to form a betaine R'-CH(S(+)Me(2))-CH(O(-))-R' ' in which the charged groups are gauche to one another, and torsional rotation around the C-C single bond of the betaine to form its rotamer with the two charged groups anti. The final step, elimination of sulfide from this second rotamer of the betaine, is found to be facile. In the case of the anti pathway, leading to trans-stilbene epoxide, the initial addition is found to be rate-determining, whereas for the diastereomeric syn pathway, leading to the cis-epoxide, it is instead the torsional rotation which is slowest. These results are in excellent agreement with experiment, unlike previous computational work. The unexpected and apparently unprecedented (for C-C bond-forming reactions) importance of the torsional rotation step, especially in the syn case, is due to the fact that all the barriers involved are low-lying. This novel picture of the mechanism provides a sound basis for the future development of chiral sulfides for enantioselective epoxide synthesis.  相似文献   

8.
Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R'P═NSiMe(3) [R' = R' = Me (2a); R' = Me, R' = Ph (2b); R' = R' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R'O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)). A mechanism is proposed for the unexpected formation of [4](+) in which the formation of the donor-stabilized adduct [3](+) occurs as the first step.  相似文献   

9.
A one-pot reaction between di-n-butyltin oxide and diethyl/di-n-propyl sulfite in the presence of an equimolar amount of alkyl iodide proceeds via sulfur-centered Arbuzov rearrangement to afford the corresponding di-n-butyltin (alkoxy)alkanesulfonates n-Bu2Sn(OR')OS(O)2R [R = R' = Et (1), n-Pr (2); R = Me, R' = Et (3), n-Pr (4)]. The compounds 1 and 3 react with methylphosphonic acid under mild conditions to give [n-Bu2Sn(OS(O)2R)OP(O)(OH)Me]n [R = Et (5), Me (6), respectively].  相似文献   

10.
The thermally stable silylene Si[(NCH2But)2C6H4-1,2] 1 undergoes oxidative addition reactions with the lithium amides LiNRR'(R = SiMe3, R' = But; R = SiMe3, R' = C6H3Me2-2,6; R = R' = Me or R = R' = Pri) to afford the new lithium amides Li(THF)2[N(R)Si(SiMe3){(NCH2But)2C6H4-1,2}][R = But2 or R = C6H3Me2-2,6 (3a)] or the new tris(amino)functionalised silyllithiums Li(THF)x[Si{(NCH2But)2C6H4-1,2}NRR'][R = SiMe3, R' = C6H3Me2-2,6, x = 2 (3); R = R'= Me, x = 3 (4) or R = R' = Pri, x = 3 (5)]. Compounds 4 and 5 are stable at ambient temperature but compound 3 is thermally labile and converts into 3a upon heating. The pathway for the formation of 2 and 3 is discussed and the X-ray structures of 2-5 are presented.  相似文献   

11.
A series of new (silylamino)phosphines that contain sterically bulky silyl groups on nitrogen were prepared by deprotonation/substitution reactions of the hindered disilylamines t-BuR(2)Si(Me(3)Si)NH (1, R = Me; 2, R = Ph) and (Et(3)Si)(2)NH (3). Sequential treatment of the N-lithio derivatives of 1-3 with PCl(3) or PhPCl(2) and MeLi gave the corresponding (silylamino)phosphines t-BuR(2)Si(Me(3)Si)NP(R')Me (5, R = Me, R' = Ph; 6, R = Ph, R' = Me) and (Et(3)Si)(2)NP(R)Me (11, R = Me; 12, R = Ph) in high yields. Two of the P-chloro intermediates t-BuR(2)Si(Me(3)Si)NP(Ph)Cl (7, R = Ph; 9, R = Me) were also isolated and fully characterized. Hydrolysis of 7 afforded the crystalline PH-substituted aminophosphine oxide t-BuPh(2)SiN(H)P(Ph)(=O)H (10). Thermal decomposition of 7 occurred with elimination of Me(3)SiCl and formation of a novel P(2)N(2) four-membered ring system (36) that contains both P(III) and P(V) centers. Reactions of the N-lithio derivatives of amines 1 and 2 with phosphorus trihalides afforded the thermally stable -PF(2) derivatives t-BuR(2)Si(Me(3)Si)NPF(2) (13, R = Me; 14, R = Ph) and the unstable -PCl(2) analogue 17 (R = Ph). Reduction (using LiAlH(4)) of the SiPh-substituted dihalophosphines 14 and 17 gave the unstable parent phosphine t-BuPh(2)Si(Me(3)Si)NPH(2) (15). The P-organo-substituted (silylamino)phosphines underwent oxidative bromination to afford high yields of the corresponding N-silyl-P-bromophosphoranimines t-BuR(2)SiN=P(R')(Me)Br (18, R = R' = Me; 19, R = Me, R' = Ph; 20, R = Ph, R' = Me) and Et(3)SiN=P(R)(Me)Br (23, R = Me; 24, R = Ph). Subsequent treatment of these reactive PBr compounds with lithium trifluoroethoxide or phenoxide produced the corresponding PO derivatives t-BuR(2)SiN=P(R')(Me)OR' ' (25 and 26, R' ' = CH(2)CF(3); 28-30, R' ' = Ph) and Et(3)SiN=P(R)(Me)OR' (31 and 33, R' = CH(2)CF(3); 32 and 34, R = Ph), respectively. Many of the new compounds containing the bulky tert-butyldiphenylsilyl group, t-BuPh(2)Si, were solids that gave crystals suitable for X-ray diffraction studies. Consequently, the crystal structures of three (silylamino)phosphines (6, 7, and 14), one (silylamino)phosphine oxide (10), one N-silylphosphoranimine (30), and the cyclic compound 36 were determined. Among the (silylamino)phosphines, the P-N bond distances [6, N-PMe(2), 1.725(3) A; 7, N-P(Ph)Cl, 1.68(1) A, 14, N-PF(2), 1.652(4) A] decreased significantly as the electron-withdrawing nature of the phosphorus substituents increased. The N-silylphosphoranimine t-BuPh(2)SiN=PMe(2)OPh (30), which is a model system for poly(phosphazene) precursors, had a much shorter P=N distance of 1.512(6) A and a wide Si-N-P bond angle of 166.4(3) degrees. A similar P=N bond distance [1.514(7) A] and Si-N-P angle [169.9(6) degrees ] were observed for the exocyclic P=N-Si linkage in the ring compound 36, while the phosphine oxide 10 had P-N and P=O distances of 1.637(4) and 1.496(3) A, respectively, and a Si-N-P angle of 134.3(2) degrees.  相似文献   

12.
1,3-Dipolar cycloadditions of nitrones RCH=N(CH3)O and the nitrile oxide CH3CNO to the bifunctional cyanoalkynes NC-CCR' and cyanoalkenes E-NCCH=CHR' (R=H, Ph; R'=H, Ph)--both free and ligated to PtII and PtIV--were investigated by theoretical methods at B3LYP and, for some reactions, CCSD(T) and CBS-Q levels of theory. Chemo-, regio-, and stereoselectivity of the processes and factors, which affect the reactivity and selectivity, were analyzed, and verified trends are discussed in details. Coordination of dipolarophiles to PtII and, particularly, to PtIV facilitates the CN relative to the CC additions of nitrones due to higher activation of the CN group in comparison to the CC group. The bonding of the ligands to platinum also favors the meta versus ortho pathways and endo versus exo pathways that sometimes lead to a switch of the reaction direction. Introduction of Ph groups into the reactant(s) molecules also leads to the promotion of the CN versus CC routes, and this effect is especially strong when both reactants are Ph-substituted. The substituent effect is accounted for by steric repulsions imposed by the Ph groups in transition states (TSs) and by the loss of a conjugation in phenylnitrone and phenylcyanoalkene molecules upon the TS formation. Solvation inhibits the CN and meta-CC additions and, hence, generally favors the CC versus CN pathway, the ortho versus meta pathway, and the exo versus endo pathway. All reactions except one proceed concertedly via a nearly synchronous mechanism for the CN and meta-CC additions to free ligands and asynchronous mechanism for the other processes. For the reaction CH2=N(CH3)O + PtIV-1, a stepwise route is realized.  相似文献   

13.
A study of the reactivity of semi-stabilised arsonium ylide anions in olefination reactions is presented. The different ylide anions were generated by the addition of nBuLi to various arsonium halide derivatives: [Ph(2)As(R)R'](+)X(-), where R and R' are methyl, allyl, prenyl or benzyl groups. By using diallyldiphenylarsonium bromide (R=R'=allyl) an olefination protocol was optimised allowing the efficient transformation of aliphatic aldehydes into terminal 1,3-dienes with a high selectivity for the E isomer (E/Z ratios ranging from 90:10 to 97:3). The olefination reactions of aldehydes with dissymmetric arsonium halides (R not equal R') are very chemoselective; with arsonium ylide anions the benzyl moiety is more reactive than the allyl moiety which is much more reactive than prenyl and methyl groups. Based on the experimental results, a mechanism is proposed for the reaction.  相似文献   

14.
Huang BH  Yu TL  Huang YL  Ko BT  Lin CC 《Inorganic chemistry》2002,41(11):2987-2994
Factors affecting the coordination mode of an amidato group on aluminum will be presented. The reaction of N-tert-butylalkylacetamide ((t)BuNHCR([double bond]O)) with 1.1 molar equiv of Me(3)Al in refluxing hexane affords a pentacoordinated, dimeric compound [Me(2)Al[eta(2)-(t)BuNC(R)(mu(2)-O)]](2) (3, R = p-(t)Bu-C(6)H(4); 4, R = 2,6-F,F-C(6)H(3); 5, R = Me; 6, R = CF(3); 7, R = p-F(3)C-C(6)H(4)). However, in the presence of 2.2 molar equiv of Me(3)Al, N-tert-butyl-4-tert-butylbenzamide ((t)BuNHC(p-(t)Bu-C(6)H(4))([double bond]O in refluxing hexane gives [Me(2)Al[eta(2)-(t)BuNC(p-(t)Bu-C(6)H(4))(mu(2)-O)]AlMe(3)], 8. In contrast, the reaction of R'NHCR' '([double bond]O) with 1 molar equiv of R(3)Al at room temperature produces tetracoordinated, dimeric, eight-membered ring aluminum compounds [R(2)Al[mu,eta(2)-R'NC(R' ')O]](2) (9, R = Me, R' = 2,6-(i)Pr, (i)()Pr-C(6)H(3), R' ' = Ph; 10, R = Me, R' = (i)Bu, R' ' = Ph; 11, R = Et, R' = Bn, R' ' = Ph; 12, R = Me, R' = Ph, R' ' = CF(3); 13, R = Me, R' = Bn, R' ' = CF(3)). On the other hand, 4'-chlorobenzanilide ((p-Cl-C(6)H(4))NHCPh([double bond]O)) reacts with R(3)Al to produce trimeric, twelve-membered ring aluminum compounds [R(2)Al[mu, eta(2)-(p-Cl-C(6)H(4))NC(Ph)O]](3) (14, R = Me; 15, R = Et). Furthermore, the reaction of 2'-methoxybenzanilide with 1 molar equiv of Me(3)Al in hexane yields a dinuclear aluminum complex [Me(2)Al(o-OMe-Ph)NC(Ph)(O)AlMe(3)], 16.  相似文献   

15.
A large series of new N-phosphorylphosphoranimines that bear potentially reactive functional groups on both phosphorus centers were prepared by silicon-nitrogen bond cleavage reactions of N-silylphosphoranimines. Thus, treatment of the N-silylphosphoranimines, Me(3)SiN=P(Me)(R)X (R = Me, Ph; X = OCH(2)CF(3) and R = Me, X = OPh), with phosphoryl chlorides, RP(=O)Cl(2) (R' = Cl, Me, Ph), readily afforded the corresponding N-phosphoryl derivatives, R'P(=O)(Cl)-N=P(Me)(R)X, in high yields. Subsequent reaction with 1 or 2 equiv of the silylamine, Me(3)SiNMe(2), resulted in ligand exchange at the phosphoryl (P=O) group to give the P-dimethylamino analogues, R'P(=O)(NMe(2))N=P(Me)(R)X (R' = Cl, NMe(2), Me, Ph; R = Me, Ph; X = OCH(2)CF(3), OPh). These new N-phosphorylphosphoranimines (and one thiophosphoryl analogue) were obtained as thermally stable, distillable liquids and were characterized by NMR ((1)H, (13)C, and (31)P) spectroscopy and elemental analysis. One member of the series, Cl(2)P(=O)N=P(Me)(Ph)OCH(2)CF(3) (4), was also studied by single-crystal X-ray diffraction which revealed that the formal P(O)-N single bond [1.55(1) A] is shorter than the formal N=PR(2)X double bond [1.60(1) A]. Such structural features are compared to those of similar compounds and discussed in relationship to the unexpected thermolysis pathways observed for these N-phosphorylphosphoranimines, none of which produced poly(phosphazenes).  相似文献   

16.
A series of amidoketophosph(on)ates of general structure PhCH2OCONHCH(R)COCHR'(CH2)n(O)P(O2-)(O)R' (R = H, CH3; R' = H, CH3; n = 0, 1; R' = H, CH3, Et, Ph) have been prepared as a potential source of beta-lactamase inhibitors. The phosphonates (n = 0) were obtained by means of the Arbuzov reaction while most of the phosphates were achieved from reaction of phosph(or/on)ic acids with the appropriate diazoketone PhCH2OCONHCH(R)COCR'N2. The electrophilicity of the carbonyl group in the resulting phosph(on)ates was assessed by the degree of hydration in aqueous solution, determined from NMR spectra. These compounds inhibited typical class C and class D beta-lactamases, particularly the latter group, but showed no activity against class A enzymes. To enhance the carbonyl electrophilicity, an alpha-difluorinated analogue (R = H, CHR' = CF2, n = 0, R' = Et) was also prepared, but no enhanced inhibitory activity was observed. All evidence suggested that these compounds inhibited in the carbonyl form rather than by formation of tetrahedral adducts at the beta-lactamase active site. They show promise as leads to specific class D beta-lactamase inhibitors.  相似文献   

17.
Zhou M  Gong T  Qiao X  Tong H  Guo J  Liu D 《Inorganic chemistry》2011,50(5):1926-1930
Treatment of the appropriate lithium or sodium 2,4-N,N'-disubstituted 1,3,5-triazapentadienate [RNC(R')NC(R')N(SiMe(3))M](2) (R = Ph, 2,6-(i)Pr(2)-C(6)H(3)(Dipp) or SiMe(3); R' = NMe(2) or 1-piperidino; M = Li or Na) with one or half equivalent portion of MgBr(2)(THF)(2) in Et(2)O under mild conditions furnishes in good yield the first structurally characterized molecular magnesium 2,4-N,N'-disubstituted 1,3,5-triazapentadienates [DippNC(NMe(2))NC(NMe(2))N(SiMe(3))MgBr](2) (1), [{RNC(R')NC(R')N(SiMe(3))}(2)Mg] (R = Ph, R' = NMe(2) 2; R = Ph, R' = 1-piperidino 3; R = SiMe(3), R' = 1-piperidino 4). The solid-state structure of 1 is dimeric and those of 2, 3, and 4 are monomeric. The ligand backbone NCNCN in 1 adopts a W-shaped configuration, while in 2, 3 and 4 adopts a U-shaped configuration.  相似文献   

18.
The formation of RP(X)(OH)OR' (R = Pr(i) or Bu(t), R' = Me or Pr(i)) from RP(X)(OH)NHBu(t) and R'OH in CDCl3 is insensitive to steric effects when X = S but not when X = O (> 10(3) times slower with R = Bu(t), R' = Pr(i) than with R = Pr(i), R' = Me), pointing to a dissociative elimination-addition mechanism (metathiophosphonate intermediate) when X = S but an associative S(N)2(P) mechanism when X = O.  相似文献   

19.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

20.
Zhou M  Li P  Tong H  Song Y  Gong T  Guo J  Weng L  Liu D 《Inorganic chemistry》2008,47(6):1886-1888
2,4-N,N'-Disubstituted 1,3,5-triazapentadienyl ligands as their lithium salts [Li{(N(R)C(R'))2N}]2 [where R = SiMe3 here and hereafter and R' = dimethylamino (1) or 1-piperidino (2)] were synthesized via the reactions of LiN(SiMe3)2 with 2 equiv of the alpha-hydrogen-free carbonitrile dimethylcyanamide or 1-piperdinecarbonitrile and used in the isolation of the two-coordinate copper(I) complexes [Cu{(N(R)C(R'))2N}]2 [R' = dimethylamino (3) and 1-piperidino (4)]. Complex 2 features a twisted W-shaped ligand backbone in the solid state. Complexes 3 and 4 show an unusual 12-membered ring dinuclear copper( I) triazapentadienyl and a less expressed ability to form a stable delocalized triazapentadienyl system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号